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Summary.Newton’slawofgravitystatesthattheforcebetweentwoobjectsintheuniverse
isequaltotheproductofthemassesofthetwoobjectsdividedbythesquareofthedistance
betweenthetwoobjects.Inthefirstpartofthepaperitisshownthatamodelwitha‘law-of-gravity’
interpretationapplieswelltotheanalysisoflongitudinalcategoricaldatawherethenumberof
peoplechangingtheirbehaviourorchoicefromonecategorytoanotherisameasureofforce
andthegoalistoobtainestimatesofmassforthetwocategoriesandanestimateofthedis-
tancebetweenthem.Toprovideabetterdescriptionofthedatadynamicmassesanddynamic
positionsareintroduced.ItisshownthatthisgeneralizedlawofgravityisequivalenttoGood-
man’sRC(M)associationmodel.Inthesecondpartofthepaperthemodelisgeneralizedto
twokindsofthree-waydata.Thefirstcaseiswhentherearemultipletwo-waytablesandin
thesecondcasewehavechangeoverthreepointsoftime.Conditionalandpartialassociation
modelsarerelatedtothree-waydistancemodels,liketheINDSCALmodel,andtriadicdistance
modelsrespectively.

Keywords:Categoricaldata;Euclideandistance;Gravitymodel;Longitudinaldata;Square
tables;Triadicdistance

1.Introduction

Thispaperwillbeconcernedwithlongitudinalcategoricaldata,i.e.repeatedmeasurements
onanumberofobservationalunitswiththesameinstrument.Themaininterestinstudying
longitudinaldataiswhetherchangeoccurredand,ifso,whatthenatureofthechangeis.We
shallconfineourselvestothecaseofcategoricaldata.Ourquestionsconcernqualitativechange,
i.e.changesinattitude,opinion,behaviouroranyothercategoricalvariable.Thisistypically
differentfromcontinuousdatawhereitmightbepossibletodescribechangeintermsofbetter
orworse;forcategoricaldatadescriptionsareintermsof‘different’or‘thesame’.

Oncelongitudinalcategoricaldatahavebeencollectedtheycanberepresentedintransition
frequencytables,whicharecontingencytableswhereeachwaycorrespondstothecategoriesof
avariablemeasuredataspecifictimepoint(weadoptthewaymodeterminologyforthetables
ofCarrollandArabie(1980)).Thenumberoftimepointsdefinesthenumberofwaysofthe
transitionfrequencytable.Havingmeasuredagroupofpeopletwiceonacategoricalvariable,
asquaretransitionfrequencytablearises.Ifmeasurementsareobtainedatthreetimepointsthe
datacanbegatheredinathree-waycontingencytable,andsoforth.

AnexampleofsuchdataisobtainedfromUptonandSärlvik(1981)whodiscussedchanges
inpoliticalvotinginSweden.ThedataareshowninTable1.Therearefivepoliticalparties:
theCommunistsCOM;theSocialDemocratsSD;theCentrePartyC;thePeople’sPartyP;the

Addressforcorrespondence:MarkdeRooij,MethodologyandStatisticsUnit,InstituteforPsychological
Research,LeidenUniversity,POBox9555,2300RBLeiden,TheNetherlands.
E-mail:rooijm@fsw.leidenuniv.nl

140M.deRooij

3.1.AGaussianlink
InNewton’slawofgravitythedistanceisdefinedbyathree-dimensionalEuclideandistance,i.e.
ouruniverseisthreedimensional.Fortheanalysisofchangethedimensionalityisnotknown
inadvancebutwillbedenotedbyP.ForthedatainTable1,forexample,itislikelythatthe
partiesaredifferentiatedonthestandard‘left–right’dimensionthatisoftenfoundinpolitical
systems.Furthermore,theremightbeanotherdimensionthatdifferentiatesthefiveparties.In
Section5,forexample,wefinda‘rural–urban’dimensiononwhichthepoliticalpartiesdiffer.
Oftenthedimensionsareinterpretedafterthesolutionhasbeenfound,onthebasisofpractical
knowledgeofthedataathand.Theco-ordinatesofobjectiinP-dimensionalspacearegiven
bythevectorz.i/=.zi1,...,ziP/T.Thez.i/swill,inturn,becollectedintheI×Pmatrix
Z=.z.1/,z.2/,...,z.I//T.ThesquaredEuclideandistancebetweenobjectsiandjisgivenby

d2
ij.Z/=

P∑
p=1

.zip−zjp/2:.3/

Otherdistancemeasuresmightbeusedaswell,e.g.anydistancefromtheMinkowskifamily(see
BorgandGroenen(2005),chapter17).Whereinthelawofgravityg.x/=x2weshallemploy
g.x/=exp.x2/,theGaussiantransformationorGaussianlinkfunction(deRooijandHeiser,
2005;Nosofsky,1985),whichisamonotonefunction.Again,likeforthedistanceformulation,
othertransformationfunctionsmightbeused,butinSection3.4itwillbeshownthatthisfunc-
tionrelatesthelawofgravitytoawell-knownmodelforthestatisticalanalysisofcontingency
tables.

3.2.Dynamicmasses
Asdiscussedabovethemeasuredforcesarenotsymmetric,i.e.theforcefromCommuniston
SocialDemocratsismeasuredtobe27,whereasthereverseforceis16.Thelawofgravity
assumessymmetricforcesandtheasymmetryisaformof‘error’.

Todealwithsuchasymmetriesthemodelwillbegeneralizedintwoways.Thefirstgeneraliza-
tionistomakethemassesoftheobjectsdependentontime.So,wedealwithdynamicmasses.It
isquitenaturalthatmasseschangeinthesocialsciences,i.e.anobjectmightbepopularatone
timepointandunpopularatanother.Forexample,inbrandswitchingdatasomebrandscome
intofashionatonemomentandgooutoffashionanother.Whenanobjectispopularithas
alargemass;whenitisunpopularithasasmallmass.Forourmodelthismeansthatobjects
haveamassateachtimepoint,andthatmasswillbedenotedbymt.i/,themassofobjectiat
timepointt.Inagraphicalrepresentation(likeFig.1),eachobjectwouldhavetwocircles.

3.3.Dynamicpositions
Asecondgeneralizationistomakethepositionstimedependent.So,dynamicpositionsare
introducedintothemodel.Aninterpretationofadynamicpositionisthatthecontentofan
objecthaschanged.Forexample,apoliticalpartymightchangeitselectionprogrammeafter
ithaslostdramaticallyinthelastelectionorwhenalossisinprospect,andtherebychangeits
relativepositiontowardsotherparties.Eachobjecthasapositionforeachtimepointwhichis
denotedbyzt.i/=.zit1,...,zitP/Tandthepositionsofallobjectsattimepointtaregathered
inamatrixZt=.zt.1/,zt.2/,...,zt.I//T.Theone-modeEuclideandistance(3)isreplacedbya
two-modeEuclideandistance:

d2
ij.Z1;Z2/=

P∑
p=1

.zi1p−zj2p/2:.4/
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Table 1. Swedish voting data representing voting
changes from 1964 (rows) to 1970 (columns)†

com sd c p con
COM (22) 27 4 1 0
SD 16 (861) 57 30 8
C 4 26 (248) 14 7
P 8 20 61 (201) 11
CON 0 4 31 32 (140)

†From Upton and Särlvik (1981).

Conservatives CON. These are the anglicized names following Upton and Särlvik (1981). The
rows correspond to the political parties in 1964 (in capital letters); the columns to the political
parties in 1970 (lower-case letters).

The focus will be on change, i.e. on the off-diagonal entries. The values on the diagonal are
within parentheses; for these cells special parameters (which are often called loyalty parameters)
will be included in the models to be developed.

The question, once we have such change data, is not whether there is association but what the
pattern of association looks like. We shall propose a model for these data based on Newton’s
law of gravity, which states that the force between any two objects in the universe is propor-
tional to the masses of the two objects and inversely related to the squared distance between the
two objects (Newton’s law of gravity will be discussed in more detail in the next section). This
deterministic model will be applied to the analysis of change where the objects in the universe
are the categories of the variable. The force between two objects is measured by the number of
respondents making a transition from one category to another. This number is not accurately
measured, however, since a sample is obtained from a population. Therefore, the law of gravity
is used as a probabilistic model assuming a multinomial sampling scheme (which is the usual
sampling scheme for such data). The force will be modelled by the mass of the two categories
and a function of the distance between the two objects.

The remainder of this paper is organized as follows. The next section discusses Newton’s law
of gravity in more detail. Section 3 describes the analysis of change in terms of Newton’s law
of gravity and introduces dynamic elements in the law to adapt for different data settings. After
introducing the dynamic elements it will be shown that the model is a reparameterization of
the RC(M) association model (Goodman, 1979, 1991). The usual identification constraints for
this model, however, are not suited to the analysis of change. A new way of identifying the
solution will be presented and finally the model will be applied to the data in Table 1. In Section
4 the model will be generalized to the case of multiple two-way tables. The gravity models that
are developed are related to conditional association models (Clogg, 1982), but again the usual
identification constraints are not suited to the analysis of change. Section 5 treats gravitational
models for three time points. These models are related to partial association models (Clogg,
1982). Identification and an application to empirical data will be discussed. We shall conclude
with discussion and reflection about the results obtained and show some limitations of the work
presented.

2. Newton’s law of gravity

One of the major laws of the natural sciences is Newton’s law of gravity:

‘All matter attracts all other matter with a force proportional to the product of their masses and inversely
proportional to the square of the distance between them’.
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d12

Fig. 1. Newton’s law of gravity: the masses of objects 1 and 2 are represented by the area of the circles
and d12 is the distance between the centres of the two objects

This law can be written in a formula as

Fij ∝ m.i/m.j/

d2
ij

, .1/

where Fij denotes the force between objects i and j, m.i/ and m.j/ are the masses of the objects
i and j, and d2

ij is the squared distance between the objects. A more general formulation of the
law is

Fij ∝ m.i/m.j/

g.dij/
, .2/

where g.·/ is g.x/=x2, but may also be some other function. A graphical representation is shown
in Fig. 1, where the masses are represented by the area of a circle. Newton explained a wide range
of previously unrelated phenomena by using this law: the eccentric orbits of comets, the tides
and their variations, the precession of the Earth’s axis and motion of the Moon as perturbed by
the gravity of the Sun. This work made Newton an international leader in scientific research.

In the next section we shall show that the law of gravity applies well to the analysis of social
change. Therefore, first some other definitions of the function g.·/ are provided and dynamic
elements are introduced. The most general model that results is a reparameterization of a well-
known model in statistics and social research, the RC(M) association model (Goodman, 1979,
1991). It should be noted, however, that by the time that we arrive at the RC(M) association
model many properties of real forces as they are in the natural sciences have been lost. What is
maintained is the interpretation in terms of mass and distance, and the analogy with Newton’s
law of gravity is meant more like a metaphor than reality.

3. The analysis of change

Where the task for Newton was to assess the force of the two objects on each other given
their mass and their distance, we deal with the reverse problem. We assume that each object
attracts people from other objects with some force. The resultant of these forces is flows of
people between objects. These flows can be considered measurements of the attractional forces
between objects, and thus (using the law of gravity) are the number of people going from one
object to another proportional to the mass of the first object times the mass of the second object
and inversely proportional to a function of the distance between the two objects.

In Table 1 it can be seen that there is a large number of people (57) who voted for the Social
Democrats in 1964 and for the Centre Party in 1970, so there is a large force between these
two categories. Similarly, the force between the Communists and the Conservatives is small
(the frequency equals 0). Moreover, the force of one category on another is not equal to the
reverse; for example, the force Communists–Social Democrats equals 27 and the force Social
Democrats–Communists equals 16.
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Inthegraphicalrepresentationeachobjectisshowntwice:onceforeachtimepoint.

3.4.Rewritingthemodel
Themodelwithdynamicmassesanddynamicpositionsis

Fij∝
m1.i/m2.j/

exp{d2
ij.Z1;Z2/}

:.5/

Thisgravitymodelcanberewritteninaformthatiswellknowninstatisticsandisoften
appliedinsociologicalstudies;theRC(M)associationmodel(Goodman,1979,1991).Byback-
transformingtheparametersofthismodel,estimatesofthemassesandco-ordinatesofourgrav-
itymodelareobtained.Furthermore,relationshipsofthiswell-knownmodeltoothermodelsfor
contingencytablesarewellestablished,andarethenalsovalidforourgravitymodel.However,
theusualgraphicaldisplaysfortheRC(M)associationmodelaresusceptibletomisinterpreta-
tion(forexamplesseedeRooijandHeiser(2005)),whereasourinterpretationismoreintuitive.
Thetransformationfromgravitytoassociationmodelisasfollows(deRooijandHeiser,2005):

Fij∝
m1.i/m2.j/

exp{P∑
p=1

.z2
i1p+z2

j2p−2zi1pzj2p/}
∝

m1.i/m2.j/

exp(P∑
p=1

z2
i1p)exp(P∑

p=1
z2

j2p)exp(P∑
p=1

−2zi1pzj2p):.6/

Definingα.i/=m1.i/=exp.Σ
P
p=1z2

i1p/andβ.j/=m2.j/=exp.Σ
P
p=1z2

j2p/,weobtain

Fij∝
α.i/β.j/

exp(P∑
p=1

−2zi1pzj2p)
∝α.i/β.j/exp(P∑

p=1
2zi1pzj2p)

∝α.i/β.j/exp(P∑
p=1

φpμipνjp),.7/

withzi1p=φ
1=2
pμip=√2andzj2p=φ

1=2
pνjp=√2.Thelastlineinexpression(7)isGoodman’s

(1979,1991)RC(M)associationmodel.Insummary,westartedwith(anadaptationof)New-
ton’slawofgravity,introduceddynamicelementsandendedupwiththiswell-knownmodel.
TheRC(M)associationmodelisareducedrankmodelfortheassociationwhichequalsthe
saturatedmodelwhenthedimensionalityequalsI−1andwhichequalsthe(quasi-)indepen-
dencemodelwhenthedimensionalityis0.Themodelwithstablepositionsisthehomogeneous
RC(M)associationmodelandimposesasymmetryrestrictionontheassociation,andthusisa
specialcaseofthequasi-symmetrymodel(Caussinus,1965).Themodelwithstablemassesand
positionsisaspecialcaseofthesymmetrymodel.

Sinceourfocusisontheoff-diagonalentriesweneedparametersforthediagonalentriesof
thetable.Theseareloyaltyparametersforeachclass,i.e.themodelbecomes
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two-waytables,e.g.transitiondatathatareobtainedindifferentcountries,ordifferentgroups
oratdifferenttimepoints.

4.1.Themodel
Inthissectionweshalldevelopmodelsformultipletwo-waytables.Eachofthesetablescanbe
modelledbythegravitymodelsoftheprevioussection,resultinginauniversewithobjectsand
massesforeachlayer(k=1,...,K)ofthetable.Themostgeneralmodelis

Fijk∝
m1k.i/m2k.j/

exp{d2
ij.Z1k;Z2k/}

,.9/

wheremtk.i/isthemassofobjectiattimepointtinlayerkandthevectorztk.i/givesthe
positionofobjectiattimepointtinlayerk,i.e.eachlayerisrepresentedbythegravitymodel
oftheprevioussection.

Restrictionscanbeimposedtorelatethedifferentuniverses.Forexample,themassesof
differentlayersortheco-ordinatesofdifferentlayerscanbeconstrainedtobeequalorequal
uptoascalingconstant.Themostnaturalchoiceistorestricttheco-ordinates(Ztk).Examples
ofrestrictionsare

Ztk=ZtWk,.10/

Ztk=ZWk,.11/

Ztk=Zt,.12/

Ztk=Z,.13/

whereWkisadiagonalmatrix,specifyingpositiveweightsthatstretchorshrinkthedimensions
ofeachlayer,andZisamatrixwithco-ordinatesofthepoints,whichcanbedependentontime
(Zt)ornot(Z).Whenwppk>1,dimensionpforlayerkisstretched,meaningthatforlayerkthe
objectsaremoredifferentiatedonthisdimension.Whenwppk<1thedimensionshrinks,i.e.for
layerktheobjectsarelessdifferentiatedondimensionp.Therestrictioninequation(11)defines
thewell-knownINDSCAL-typeofthree-waydistancemodel(CarrollandChang,1970),with
stablepositionsofthecategoriesforeachlayerofthetable.Thefirstrestriction,equation(10),
definesatwo-modeversionoftheINDSCALmodel,i.e.anINDSCALdistancemodelwith
dynamicpositions.Thethirdrestriction,equation(12),definestwo-modedistanceswhichare
equalacrossthelayersandthefourthrestriction,equation(13),definesone-modedistancesthat
areequalacrossthelayers.Anexampleofamodelwithstablepositionswithineachlayerthat
isstretchedorshrunkinthedifferentlayersandwithequalmassesoverthelayerscanbefound
indeRooij(2001).

4.2.Rewritingthemodel
Likethemodelfortwo-waytablesthismodelcanbewrittenasanassociationmodel.Inthiscase
wedealwiththeconditionalassociationmodelsasproposedbyClogg(1982)andBeckerand
Clogg(1989).Asinthetwo-waycase,thelinkbetweenthetwotypesofmodelsmakesavailable
softwareforfittingourgravitymodelsandhelpsinunderstandingrelationshipsbetweenour
gravitymodelsandothermodelsforcontingencytables.Theformulaefortransformingone
modelintotheotheraresimilartoexpressions(6)and(7).Forexample,withtherestrictionin
equation(10)wehave
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Fij ∝ m1.i/m2.j/ exp.δijλi/

exp{d2
ij.Z1; Z2/} , .8/

where δij equals 1 if i = j and 0 otherwise. The λi are object-specific loyalty parameters, of
which there are I. The effect of these parameters is that the observations on the diagonal do not
influence the masses and the distances, i.e. the gravity model pertains to change. Another effect
of these parameters is that the expected frequencies equal the observed frequencies for these
cells.

3.5. Distances, distances and inner products
The RC(M) association model is often thought of as a model for ordinal data (although, strictly,
nowhere is an ordinal restriction imposed on the scale values) and the parameters μip and νjp

are often interpreted in terms of distances. This raises the question what is new about the dis-
tance interpretation in the gravity model. To answer this question we should distinguish between
within-set distances and between-set distances. In the RC(M) association model distances within
the set of row points can be interpreted such that, when μi and μi′ , with μi = .μi1, . . . , μiP /T, are
(approximately) equal, categories i and i′ have the same pattern of association to the column
categories. To interpret the relationship between the row and column sets of categories in the
RC(M) association model an inner product rule must be used, where the association equals
the product of the length of the two vectors μi and νj multiplied by the cosine of the angle
between these two vectors. The parameterization in terms of Newton’s law of gravity provides
a between-set distance interpretation, i.e. an interpretation of the distance between z1.i/ and
z2.j/.

3.6. Identification constraints
The RC(M) association model is not identified; it needs location, scaling and cross-dimensional
constraints on the row and column scores. Usually the scores are centred, the sum of squares is
set equal to 1 and the dimensions are made orthogonal. For the analysis of change, however,
these standard identification constraints prevent substantial conclusions.

Let us denote the centred row scores by z̃1.i/. It is possible to transform these centred row
scores linearly by z1.i/ = T z̃1.i/ + a for diagonal T and a vector a, and to adapt accordingly
z2.j/=T−1 z̃2.j/−a and the estimates of the masses without changing the expected frequencies.
The vector a changes the mean position of the row points on each dimension whereas the diag-
onal matrix T changes the spread of the row points on each dimension. These transformations,
however, do not change the order or relative spacings between row points; they are a dimen-
sionwise linear transformation of the row points. The centred column points are transformed by
using the inverse of this linear transformation. To obtain optimal location (a) and scalings (T)
the correlation between squared distances (d2

ij .Z1; Z2/) and F̂ ij=α̂iβ̂j is minimized. This can
be done by using the procedures that are described in de Rooij (2007).

It is important that the total mass is equal over the time points, i.e. that the total mass at the
first time point is equal to the total mass at the second time point. Therefore the identification
constraints on the masses were chosen such that this restriction is true. The mass will be rep-
resented by the area of the circle. To draw the circles we shall therefore use a radius equal to
r.i/=√{m.i/=π}.

3.7. Estimation
Several researchers have discussed estimation of the RC(M) association model (Goodman,
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Fig. 2. Graphical representation of transitions between Swedish political parties: , COM, SD, C, P, CON,
mass and positions of the parties in 1964; , sd, com, c, con, p, mass and positions of the parties in 1970

1979; Becker, 1990; Haberman, 1995). By back-transforming using equations (7) and (6) we
can obtain estimates of our model (5). The program LEM (Vermunt, 1997) will be used to fit
the models; the transformation to a distance model and the way of identifying the solution are
performed in MATLAB (Mathworks, 2006). The model with stable masses but dynamic posi-
tions cannot be written as an association model and thus cannot be estimated with available
software for association models.

3.8. Application to Swedish politics data
The data in Table 1 were analysed by using the gravity models proposed. First some benchmark
models were fitted. The quasi-independence model, the symmetry model and the quasi-symme-
try model do not fit these data (X2-values respectively 103.13, 78.03 and 22.86; G2 101.12, 83.13
and 23.37, with 11, 10 and 6 degrees of freedom df). Since the quasi-symmetry model does not fit
the data we expect that the models with stable positions do not fit either, which is indeed the case.
With one dimension X2 =28:97, G2 =27:29 and df =7 and with two dimensions the fit barely
increased: X2 =22:88, G2 =23:40 and df =4. With dynamic positions a good fit was obtained in a
single dimension, X2 =4:96, G2 =5:92 and df =4. The solution is shown in Fig. 2. We see several
positional changes there: in 1964 the positions of the five parties are as expected on the left–right
dimension, and also as described by Upton and Särlvik (1981). Ordered from left to right the
Communists, the Social Democrats, the Centre Party, the People’s Party and the Conserva-
tives.

The positional changes from 1964 to 1970 can be summarized as follows: the Communists
and Social Democrats grouped together on the left wing whereas the Conservatives and People’s
Party grouped on the right wing. Especially the Social Democrats made a big change to the left.
The Centre Party moved from the centre to a more right-wing position. It seems that some
polarization happened that distinguishes the two left-wing parties from the three other parties.
Such a grouping was also found in Upton and Särlvik (1981). Although it may seem strange
that the Social Democrats are more leftist than the Communists this has also been observed at
several points in time by Lewin et al. (1972), page 226.

Concerning the masses it can be seen that the masses of the Communists, the People’s Party
and the Social Democrats stay the same, the Centre Party is the winner and the Conservative
Party is the political party that lost mass.

4. Multiple two-way tables and multiple universes

Up to this point discussion has been confined to two-way tables. In the remainder of this paper
we shall generalize the models to three-way tables. This section treats the case of multiple
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Fijk∝
m1k.i/m2k.j/

exp{d2
ij.Z1;Z2;Wk/}

∝
m1k.i/m2k.j/

exp{∑pw2
kp.zi1p−zj2p/2}

∝
m1k.i/m2k.j/

exp(∑pw2
kpz2

i1p+w2
kpz2

j2p−2w2
kpzi1pzj2p)

∝
m1k.i/

exp(∑pw2
kpz2

i1p)
m2k.j/

exp(∑pw2
kpz2

j2p)exp(∑p2w2
kpzi1pzj2p)

∝αikβjkexp(∑pφkpμipνjp),.14/

wherethedifferencebetweenzi1pandμipisascalingfactor√2andφkp=w2
kp.Thelastlinein

expression(14)istheconditionalassociationmodel(Clogg,1982;BeckerandClogg,1989).
Model(9)representsareducedrankassociationmodelforeachtwo-waytable.Byusing

restrictions(10)–(13)theco-ordinatesofthedifferentlayersarefunctionsofeachother.With
restrictions(11)and(13)symmetryrestrictionsontheassociationareimposed,whereasrestric-
tions(12)and(13)resultinmodelswithoutthree-wayassociation.

4.3.Identification
Theconditionalassociationmodelneedslocationandscalingconstraintsbutnocross-dimen-
sionalconstraints(Wong(2001),page207).Similartothesituationthatwasdiscussedinthe
previoussection,newlocations(a)andscalings(T)arefoundbyminimizingthecorrelation
betweentheelementseij,definedas

eij=∑kF̂ijk

α̂ikβ̂jk

,

andthesquaredunweightedtwo-modedistances.Theone-modedistancemodels((11)and(13))
areidentified.

ThedegreesoffreedomfortheconditionalassociationmodelswerediscussedinWong(2001),
pages205–207.Forourmodelsthesenumbersshouldbeadaptedfortheloyaltyparametersfor
thenon-movers,i.e.thecellfrequenciesrepresentedwithinparenthesesinTable2.Themodel
thatisgiveninexpression(9)ismultipliedbythetermexp.δij|kλik/whereδij|kequals1ifi=j

and0otherwise.ThereareIKoftheseparameters.

4.4.Estimation
ConditionalassociationmodelscanbeestimatedwithLEM(Vermunt,1997).Fromtheexpected
frequenciesweobtainanidentifiedsolutionwithaMATLABprocedure.

Acautionarynoteisinorderhere:whenthemodelwithconstraint(10)or(11)isestimated
byusingtheconditionalassociationmodeltoobtainestimates,althoughnotregularlyencoun-
tered,negativeassociationparametersmayoccurforsomelayer.Inthatcasethereisnota
distancerepresentationoftheconditionalassociationmodel.Atraditional(i.e.fortheassoci-
ationmodel)graphicaldisplayoftheassociationmustalsoreflectthedimensionfortherow
orcolumnpointsforthespecificlayer.Ifsuchanegativeassociationcoefficientoccursitis
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Differentformsofd2
ijk.Z1;Z2;Z3/canbeconsidered.deRooijandGower(2003)providedan

extensivedescriptionofpossibilitiesplusthegeometryoftheoptions.Anaturalchoiceinthe
currentframeworkistoconsiderthegeneralizedEuclideanmodel,inwhichcased2

ijkisdefined
as

d2
ijk.Z1;Z2;Z3/=d2

ij.Z1;Z2/+d2
ik.Z1;Z3/+d2

jk.Z2;Z3/,.16/

whereeachdyadicdistanceisdefinedasinequation(4).Theinterpretationofatriadicdistance
isfacilitatedwhentheisocontoursareknown,whicharethelineswithconstanttriadicdistance
withtwofixedpoints.TheisocontoursforthegeneralizedEuclideanmodelarecirculararound
thecentreofthetwofixedpoints(deRooijandGower(2003),Fig.3)justliketheisocontours
foraregularEuclideandistance.Thedistancethatisdefinedinequation(16)isatriadicthree-
modedistance,wherecategorieshavedynamicpositionsasbeforeinthetwo-modedistance.
Thepositionscanbeconstrainedtobestable;thenthetriadicone-modedistanceisobtained,
inwhichcaseZ1=Z2=Z3=Z.

5.2.Rewritingthemodel
Model(15)canberewrittenasapartialassociationmodel(Clogg,1982)asfollows:

Fijk∝
m1.i/m2.j/m3.k/

exp{d2
ijk.Z1;Z2;Z3/}

∝
m1.i/m2.j/m3.k/

exp{d2
ij.Z1;Z2/+d2

ik.Z1;Z3/+d2
jk.Z2;Z3/}

∝
m1.i/m2.j/m3.k/

exp(∑pz2
i1p+z2

j2p−2zi1pzj2p+z2
i1p+z2

k3p−2zi1pzk3p+z2
j2p+z2

k3p−2zj2pzk3p)
∝

m1.i/m2.j/m3.k/

exp(∑p2z2
i1p+2z2

j2p+2z2
k3p−2zi1pzj2p−2zi1pzk3p−2zj2pzk3p):.17/

Defining

α.i/=m1.i/=exp(P∑
p=1

2z2
i1p),

β.j/=m2.j/=exp(P∑
p=1

2z2
j2p)

and

γ.k/=m3.k/=exp(P∑
p=1

2z2
k3p)

weobtain

Fijk∝α.i/β.j/γ.k/exp(∑p2zi1pzj2p+2zi1pzk3p+2zj2pzk3p):.18/

Thepartialassociationmodelwithrestrictedrow,columnorlayertermssuchthattherow
scoresareequalintheassociationwiththecolumnsandwiththelayers,andsimilarlyforthe
columnscoresandlayerscores,is
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Table 2. Mobility data from three countries:USA, UK and Japan†

Country Father Son

un ln um lm fa
US UN (1276) 364 274 272 17

LN 1055 (597) 394 443 31
UM 1043 587 (1045) 951 47
LM 1159 791 1323 (2046) 52
FA 666 496 1031 1632 (646)

UK UN (474) 129 87 124 11
LN 300 (218) 171 220 8
UM 438 254 (669) 703 16
LM 601 388 932 (1789) 37
FA 76 56 125 295 (191)

Japan UN (127) 101 24 30 12
LN 86 (207) 64 61 13
UM 43 73 (122) 60 13
LM 35 51 62 (66) 11
FA 109 206 184 253 (325)

†From Yamaguchi (1987): UN, upper non-manual; LN, lower non-
manual; UM, upper manual; LM, lower manual; FA, farm.

reasonable to assume that the model does not provide a good description of the association for
that specific layer.

4.5. Application
To illustrate, the gravity model will be applied to data from Yamaguchi (1987) (see also Caus-
sinus and Thelot (1976)), where occupational mobility is given for three countries: the USA,
the UK and Japan. The data are reproduced in Table 2. Each occupational mobility table has
five occupational categories: upper non-manual UN; lower non-manual LN; upper manual UM;
lower manual LM; farmer FA. Again the focus is on change and for all cells within parentheses
loyalty parameters are included in the models to be discussed.

Two benchmark models for these data are the conditional quasi-independence model and the
no-three-way interaction model. The conditional quasi-independence model of father and son
given country has X2 =1409:76 and G2 =1336:20 with df=33 and the no-three-way association
model has X2 =36:24 and G2 =36:21 with df=22. The latter model with symmetry restrictions
on the father–son association term has X2 =125:24 and G2 =106:67 with df=28 (the degrees of
freedom in the latter two models are computed by adding the number of boundary parameters
to the usual degrees of freedom). The last model shows that the assumption of a symmetric
association pattern is not tenable, i.e. a two-mode distance model will be needed.

The one-dimensional model with dynamic masses and dynamic positions constrained to be
equal for the three layers (the restriction which is defined by equation (12)) fits the data mar-
ginally (X2 = 37:75, G2 = 37:72 and df = 26), which is reasonable considering the large sample
size. The solution is shown in Fig. 3.

The major positional change is that of the farmer category, which is for the fathers at the right
but for the sons in the middle, closer to the non-manual categories. When looking at the masses
it can be seen that the USA and the UK have a similar pattern, whereas the pattern in Japan is
typically different. In the USA and the UK the non-manual classes gained mass, whereas the
lower manual and farmer classes lost mass. In the USA the upper manual class gained mass
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Fig. 3. Graphical representation of occupational mobility data from Yamaguchi (1987) ( , UN, LN, UM, LM,
FA, mass and positions of the categories for the fathers; , un, ln, fa, um, lm, mass and positions of the
categories for the sons): (a) USA; (b) UK; (c) Japan

whereas in the UK this category lost mass. In Japan the farmers lost mass whereas all other
categories gained mass.

5. Generalizations to change over three time points

5.1. The model
Above we treated models for two time points. Often, however, data are gathered at more time
points. For three time points a gravity model can be built by using triadic distance models
(de Rooij and Gower, 2003; Gower and de Rooij, 2003; de Rooij and Heiser, 2000, Heiser and
Benanni, 1997; Daws, 1996; Joly and Le Calvé, 1995; Cox et al., 1991; Pan and Harris, 1991),
models that define a distance between three points simultaneously. An extension of model (5) is

Fijk ∝ m1.i/m2.j/m3.k/

exp{d2
ijk.Z1; Z2; Z3/} : .15/
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Fijk∝α.i/β.j/γ.k/exp(∑pφ1pμipνjp+φ2pμipκkp+φ3pνjpκkp):.19/

Model(18)canbeobtainedfromthisbydefining

zi1p=
apμip
√2

,

zj2p=
bpνjp
√2

,

zk3p=
cpκkp
√2

whereap=√.φ1pφ2p=φ3p/,bp=φ1p=apandcp=φ2p=ap.
Again,thelinkbetweenthegravityandassociationmodelmakessoftwareavailableforfitting

thegravitymodelandprovidesinsightintotherelationshipsbetweenourgravitymodeland
othermodelsforcontingencytables.

5.3.Identification
Forthepartialassociationmodelslocationconstraintsarenecessaryforeachvariable,whereas
scalingandcross-dimensionalconstraintsarenecessaryforonlyoneofthethreevariables
(AndersonandVermunt(2000),page95,andWong(2001),page204).Inthetriadicthree-mode
modelwecanfindnewlocationsforthevariableatthefirsttimepointa,forthesecondtimepoint
bandforthethirdtimepointc=−.a+b/byminimizingthecorrelationbetweenF̂ijk=α̂iβ̂jγ̂k

andthesquaredtriadicdistanced2
ijk.Z1;Z2;Z3/.Thetriadicone-modemodel,i.e.themodel

withstablepositions,isidentified.
Asbeforewefocusonchangebyincludingloyaltyparametersinthemodelforthepeoplewho

madethesamechoiceonallthreeoccasions.Inotherwords,themodeldefinedinexpression
(15)ismultipliedbythetermexp.δijkλi/,whereδijkequals1ifi=j=k,and0otherwise.The
λiareloyaltyparameters,ofwhichthereareI.

5.4.Estimation
InLEMitisnotpossibletoestimatethepartialassociationmodelsinmorethantwodimen-
sions.Inmostsituationsinwhichwewanttorepresentamodelgraphicallythiswillbeenough.
However,forcomparingagainsthigherdimensionalalternativesitisnotsatisfactory.

Forthetriadicone-modedistancefunctionwithstablepositions(Z1=Z2=Z3=Z)theasso-
ciationmodelshouldbefittedwithequalityrestrictionsontherow,columnorlayerscoressuch
thatμip=νip=κip,butalsoarestrictionontheassociationparametersφ1p=φ2p=φ3p.

5.5.Application
Toillustrate,model(15)willbeappliedtodataobtainedfromUpton(1978),page128,wherea
sampleof1651Swedishpeoplewereaskedfortheirvotesatthreeconsecutiveelections(Table3).
Therearefourpoliticalparties,theSocialDemocratsSD,theCentrePartyC,thePeople’s
PartyPandtheConservativesCON.Table3givesthemeasurementsofforcesbetweenthefour
politicalparties.Forexample,therearelowforcesbetweentheSocialDemocratsin1964,the
CentrePartyin1968andthePeople’sPartyin1970(theforceequals6)andbetweenthePeople’s
Partyin1964,theCentrePartyin1968andtheSocialDemocratsin1970(theforceequals1).
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FortheinterpretationasamodelofchangeconsidertheoddsofchoosingtheSocialDem-
ocratsversustheCentrePartyatthethirdtimepointgiventhePeople’sPartyatthefirstand
Conservativesatthesecondtimepoint.Theoddsare

πP,CON,SD

πP,CON,C
=

m1.P/m2.CON/m3.SD/exp.−d2
P,CON,SD/

m1.P/m2.CON/m3.C/exp.−d2
P,CON,C/

=
m3.SD/

m3.C/

exp.−d2
CON,SD/

exp.−d2
CON,C/

exp.−d2
P,SD/

exp.−d2
P,C/

:

So,theknowledgethatatthefirsttimepointthechoicewasforthePeople’sPartychangedthe
oddsbyafactorexp.−d2

P,SD/=exp.−d2
P,C/=0:50.

AsanotherexampleconsidertheoddsofthePeople’sPartyversustheConservativesgiven
twicetheSocialDemocrats:

πSD,SD,P

πSD,SD,CON
=

m1.SD/m2.SD/m3.P/exp.−d2
SD,SD,P/

m1.SD/m2.SD/m3.CON/exp.−d2
SD,SD,CON/

=
m3.P/

m3.CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

=
0:14
0:05

exp.−1:53/

exp.−2:06/

exp.−1:53/

exp.−2:06/

=
0:14
0:05

0:22
0:13

0:22
0:13

=2:8×1:69×1:69

=7:98:

So,aftertwicechoosingtheSocialDemocratstheoddsarelargelyinfavourofthePeople’s
PartyinsteadoftheConservatives,whichcanbejudgedfromthelargermassofthePeople’s
PartyandthesmallerdistancefromtheSocialDemocratstothePeople’sPartycomparedwith
thedistanceSocialDemocrats–Conservatives.

6.Swedishpoliticsrevisited

ThetwoexamplesthatwerediscusseddealtwithvotesfromSwedenintheperiod1964–1970
(seeSections3.8and5.5).ThefirstexampleincludedtheCommunistsforwhichwehavenodata
inthesecondexample.Theconclusionfromthefirstexample(1964–1970)wasthattherehave
beenmajorchangesinthepositions,whereastheconclusionfromthesecondexample(1964–
1968–1970)isthatthepositionsareunchanged.Thesesolutionscannotreallybecompared,
sincethefirstshowsmarginalassociationwhereasthesecondshowsconditionalassociation.It
iswellknownthatthesetwodifferinmanycases(seeAgresti(2002),chapter2).

Tocomparethepositionsfurtherweanalysedfourtables:eachofthetwo-waymarginaltables
ofthe1964–1968–1970data(Table3)andthe1964–1970data(Table1)butwithouttheCom-
munists.Forthese4×4tables,theone-dimensionalmodelwithdynamicpositionshas0degrees
offreedom,i.e.itisasaturatedmodel.Tomakecomparisonswechangedfromobject-specific
loyaltyparameterstoasingleoverallloyaltyparameter(i.e.λ1=λ2=...=λI),theeffectof
whichisthatthemassesanddistancesnowalsocontributetothefitofthediagonalelements
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Table 3. Swedish voting data representing voting
changes from 1964 to 1968 to 1970

1964 1968 1970 party
party party

SD C P CON
SD SD (812) 27 16 5

C 5 20 6 0
P 2 3 4 0
CON 3 3 4 2

C SD 21 6 1 0
C 3 (216) 6 2
P 0 3 7 0
CON 0 9 0 4

P SD 15 2 8 0
C 1 37 8 0
P 1 17 (157) 4
CON 0 2 12 6

CON SD 2 0 0 1
C 0 13 1 4
P 0 3 17 1
CON 0 12 11 (126)

As in the two-way tables the force from a to b was not equal to the force from b to a; in the
three-way table the force abc is not equal to the forces acb, bac, bca, cab and cba. The focus
is on the movers, meaning that subjects who made the same choice at all three time points are
excluded from the analysis with the gravity model, by including loyalty parameters for the cells
within parentheses.

Some benchmark models are the no-three-way association model, which has X2 =27:13 and
G2 =29:00 with df=23 with a Bayesian information criterion (BIC) statistic of −141.40. With
symmetry restrictions on the association terms we obtain X2 = 47:25 and G2 = 49:49 with
df=32 with a BIC statistic of −187.60. The latter model just does not fit: p=0:04 by using the
X2-statistic. Another benchmark model is the first-order Markov model; it has X2 =427:04 and
G2 =207:33 with df=36. Its BIC statistic equals −59.39.

Application of the gravity models with stable positions (triadic one-mode distance) gives
with one dimension X2 =166:97 and G2 =180:06 with df=47 and X2 =138:16 and G2 =138:07
with df=45 with two dimensions. Using dynamic positions X2 =116:00 and G2 =131:25 with
df = 41 in the one-dimensional solution and X2 = 74:36 and G2 = 80:86 with df = 33 in the
two-dimensional solution.

Looking at BIC statistics we obtain the following. For the model with stable positions in
one dimension the BIC statistic equals −168.17, whereas in two dimensions it is −195.34. With
dynamic positions in one dimension the BIC statistic is −172.52, and in two dimensions
it is −163.64.

Fig. 4 shows the model with the lowest BIC statistic, the two-dimensional model with dynamic
masses but stable positions. This is a model with a three-way symmetric association pattern,
i.e. all asymmetry in the data is captured by the masses. We see that the People’s Party and
the Conservatives are close in space (d2 = 0:04), whereas the Social Democrats are far from
all other parties (d2 = 1:78, d2 = 1:53 and d2 = 2:06 to the Centre Party, People’s Party and
Conservatives respectively). The Centre Party is closer to the People’s Party (d2 =0:85) and the
Conservatives (d2 =0:96) than to the Social Democrats (d2 =1:78). The largest triadic distance

Analysis of Change, Newton’s Law and Association Models 151

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

sd 

c 

p  con

Fig. 4. Graphical representation of transitions between Swedish political parties from 1964 to 1968 to 1970
(the horizontal dimension can be interpreted as the traditional left–right dimension, whereas the vertical
dimension can be interpreted as a rural–urban dimension): �, mass at 1964; , mass at 1968; , mass at
1970

is between the Social Democrats, the Centre Party and the Conservatives (d2
ijk =4:79), whereas

the smallest is between the Centre Party, the People’s Party and the Conservatives (d2
ijk =1:84).

The other two triadic distances are d2
ijk = 4:16 for the combination Social Democrats, Centre

Party and People’s Party and d2
ijk =3:63 for the combination Social Democrats, People’s Party

and Conservatives. Also triples with a recurring party have a triadic distance, which is in the
triadic one-mode distance the square root of twice the squared dyadic distance. Since these are
often smaller than the triadic distances between three different parties, the pattern is such that
more people transit between two than between three parties.

Concerning the masses we see that the Social Democrats first stay stable but then lose mass,
the Centre Party gains mass twice, the People’s Party first loses and then regains mass, and
finally the Conservatives lose mass twice.

The horizontal dimension is the traditional left–right dimension, where again the Centre
Party, the People’s Party and the Conservatives group on the right-hand side. The vertical
dimension differentiates the Centre Party from the other parties and can be understood as a
rural–urban dimension since the Centre Party used to be the Agrarian Party, attracting many
farmers and people from the small villages (Lewin et al. (1972), page 221).
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inthedatamatrix.Moreover,thesediagonalelementsarenotnecessarilyfittedperfectlyasis
thecasewithobject-specificloyaltyparameters.Withthesesettingsthemodelwithdynamic
positionshas3degreesoffreedom,whereasthemodelwithstablepositionhas5.

Foralldatasets,exceptforthe1968–1970data,dynamicpositionsareneeded.Forthe1968–
1970datathemodelwithstablepositionsprovidesanadequatefit.Theresultsareshownin
Fig.5.Figs5(a)–5(c)pertaintothemarginaltablesthatwereobtainedfromTable3,whereas
Fig.5(d)pertainstothedatafromTable1butwithouttheCommunists.FromFig.5itcanbe
concludedthatthepositionsofthepartiesin1964and1970areinallcasesroughlythesame.
Again,asinFig.2,theCentreParty,thePeople’sPartyandtheConservativesseemtocluster
togetherovertime,whichismostlyduetotheperiod1964–1968,sincethiseffectisvisiblein
boththeanalysisofthe1964–1968andthe1964–1970data.Concerningthe1968positionsin
theanalysisof1964–1968datathereisareversalofthePeople’sPartyandtheConservatives
attheright-handsideofthescale,whichcannotbefoundbackinthe1968–1970data.Note
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Fig.5.Comparisonofresultsfromfourtwo-waytables(,massesfor1964;,massesfor1968;,masses
for1970):(a)1964–1968marginaltable(obtainedfromthethree-waytable);(b)1968–1970marginaltable
(obtainedfromthethree-waytable);(c)1964–1970marginaltable(obtainedfromthethree-waytable);
(d)1964–1970resultforTable1withouttheCommunists
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theseconceptsareusedfortheanalysisofchange.Forchangefromonetimepointtoanother
thesemodelsgiveaverynaturaldescriptionofthechangeprocess.

Acknowledgements

ThisprojectwasfinishedwhiletheauthorwassponsoredbytheNetherlandsOrganisationfor
ScientificResearch,innovationalgrant452-06-002.IthankPaulEilers,WillemHeiser,Carolyn
Andersonandtherefereesfordiscussionandcommentsonearlierversionsofthemanuscript.

AppendixA:Softwarenote

WeusedtheprogramLEMtoobtainfittedfrequencies.Thescalingandlocationswerefoundbyusing
MATLAB.AMATLABshieldwasbuiltaroundLEMsuchthatnomanualcopyingisneededinperform-
ingtheanalysis.OnrequesttheMATLABandLEMfilescanbeobtainedfromtheauthor.
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again that this reversal is not due to the new identification constraints. The same reversal in 1968
was found by Lewin et al. (1972), page 220, and can possibly be explained by ‘the conservative
party in the sixties is our best example of a party in the throes of a crisis of identity’ (Lewin
et al. (1972), page 285), which is also apparent by their change of name from (literal translation)
‘The Right Party’ to ‘The Moderates’ (see Upton and Särlvik (1981)). When looking at the
1968–1970 data, however, this reversal of the 1968 positions is not preserved. Finally, note that
the analyses of the two data sets pertaining to changes from 1964 to 1970 give (almost) identical
results.

7. Discussion

The analysis of change was discussed in terms of Newton’s law of gravity. It was shown that a
well-known and often-applied model for the analysis of contingency tables, the RC(M) associ-
ation model, can be interpreted in terms of mass and distance, and thus has an interpretation
that is similar to the law of gravity. Both masses and positions can be stable as well as dynamic.
These dynamic elements were discussed extensively; dynamic masses relate to popularity of
objects which might change whereas dynamic positions relate to content changes of objects
(in the case of stable masses no change in content took place). The RC(M) association model
needs location and scaling constraints for identification. The usual constraints, however, are
troublesome in the analysis of change, and therefore a new way of identifying the solution was
discussed. This new way of identifying the solution makes it possible to interpret the solution
in terms of polarization, as we did in the application. However, if everything (i.e. all voters and
all parties) makes the same shift in one direction, our method will not find this shift in location
since all relative positions remain the same. An example of such a situation, as a referee pointed
out, is that as a consequence of world events (e.g. global warming) the nation becomes more
left or right wing (i.e. ‘green’). All parties will feel this shift and will adapt their stances as a
consequence. This common shift will not be noted by our gravity model. If, however, some
parties shift more than others then we will see that the relative positions change.

The new interpretation in terms of mass and distance of the RC(M) association model is
simple since both mass and distance are fairly well-understood concepts, at least better than
main effects and inner products (projection). In the examples that were shown in Section 3 (and 4)
a one-dimensional solution was obtained in which the interpretation of the graphical display
in terms of distances is much easier than the product of lengths of vectors (as in the inner prod-
uct parameterization). So, a new interpretation to a well-known model was provided, which
might be of great value, since the new interpretation has roots in the natural sciences and is well
understood by many people.

The gravity models that were proposed can be considered a generalization of the loyalty–
distance models that were proposed by Upton and Särlvik (1981). Compared with their model
our model is not dependent on an a priori ordering of the objects; our model can be used for
multidimensional solutions; and our model allows for changing positions of the objects. It can
be assumed that the solutions that are obtained with our unidimensional model with stable
positions and the loyalty–distance model of Upton and Särlvik are approximately the same.

After the case of square contingency tables we looked at the case where there are multiple
tables. Bridges between conditional association models and weighted Euclidean distances
(the INDSCAL model) were shown, but also other solutions (further or less restricted) were
discussed for such data. As for the square table case, we developed a new interpretation in
terms of mass and distance. As for the standard RC(M) association model the identification
constraints had to be adapted; we developed a manner to do so.
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The generalization to tables for three time points needed a further expansion of the law of
gravity. Distances between three points, triadic distances, were discussed and their relationship
to partial association models was shown. Again the triadic distance is easier to understand than
the sum of three inner products, as modelled in the partial association models. Although this
representation is moving away from Newton’s law of gravity, the basic ingredients are still mass
and distance. The models that were discussed can theoretically be generalized to more time
points by using tetradic (or polyadic) distances, which can be defined as sums of all (squared)
dyadic distances (as in equation (16)). However, the relationship between partial association
models and triadic distance models as shown in equations (18) and (19) does not generalize to
more time points (variables). In that case the gravity models become more restricted than the
association models.

The triadic distance models are good in showing and representing change. They lack a formal
change mechanism, however, as in for example (latent) Markov models. However, the triadic
gravity models can be conceived as second-order Markov models with restrictions, and when
interpreted by using the correct temporal ordering there is an influence of the first time point on
the second, and an influence of the first and second time points on the third. We provided some
examples of interpretation at the end of Section 5.5. For triadic three-mode distances similar
statements about conditional odds can be obtained.

The triadic gravity models are not collapsible, i.e. the change from time point 1 to 2 in triadic
distance models is different from the change that is obtained when the table was collapsed over
the third time point. A model is collapsible when the conditional association equals the marginal
association, and this is generally so for conditional independence models (Bishop et al., 1975).
For the example that was discussed in Section 5 this would be the non-fitting first-order Markov
model. A possible reason for the failure of this model is subject heterogeneity, which is due
to ignoring relevant covariates in the analysis (Agresti (2002), page 478). In other words, the
group of people who make the same change from time point 1 to 2 do not form a homogeneous
group. By using the choices that are made at the third time point we obtain more reliable change
estimates.

In this paper all models were estimated with LEM. This yielded some problems; for example,
for square tables the model with stable masses but dynamic positions cannot be fitted by using
software for association models. Furthermore, the models for observations on three time points
could not be estimated in more than two dimensions, and for the model for multiple two-way
tables sometimes a negative association coefficient occurs for a particular layer which under
a distance model is not possible. To deal with such problems special software should be writ-
ten.

We tried to build models for the whole data set. Another way of analysing square tables is
to decompose the table into a symmetric part and a skew symmetric part, and these are then
analysed separately. Often this is done by using least squares techniques. The best known of such
procedures is that due to Gower (1977) and discussed also in Constantine and Gower (1978).
Bilinear forms for skew symmetry were discussed in van der Heijden and Mooijaart (1995). For
a treatment of skew symmetry in the three-way case see de Rooij and Heiser (2000).

The use of gravity models to explain social phenomena is not new. Tobler (1976), for exam-
ple, used a social gravity model for migration data. Gravitational models are also often used in
economic and transportational studies (see, for example, Sen and Smith (1995)). In these cases,
however, the distances are often known in advance, i.e. they are real distances, or the distances
are measured by several variables. In our case, however, the distances must be estimated from
the data. The fact that Newton’s gravity model is used more often in other areas is due to its
simple and understandable nature: mass and distance are easily grasped concepts. In this paper
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