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Summary.Newton’slawofgravitystatesthattheforcebetweentwoobjectsintheuniverse
isequaltotheproductofthemassesofthetwoobjectsdividedbythesquareofthedistance
betweenthetwoobjects.Inthefirstpartofthepaperitisshownthatamodelwitha‘law-of-gravity’
interpretationapplieswelltotheanalysisoflongitudinalcategoricaldatawherethenumberof
peoplechangingtheirbehaviourorchoicefromonecategorytoanotherisameasureofforce
andthegoalistoobtainestimatesofmassforthetwocategoriesandanestimateofthedis-
tancebetweenthem.Toprovideabetterdescriptionofthedatadynamicmassesanddynamic
positionsareintroduced.ItisshownthatthisgeneralizedlawofgravityisequivalenttoGood-
man’sRC(M)associationmodel.Inthesecondpartofthepaperthemodelisgeneralizedto
twokindsofthree-waydata.Thefirstcaseiswhentherearemultipletwo-waytablesandin
thesecondcasewehavechangeoverthreepointsoftime.Conditionalandpartialassociation
modelsarerelatedtothree-waydistancemodels,liketheINDSCALmodel,andtriadicdistance
modelsrespectively.

Keywords:Categoricaldata;Euclideandistance;Gravitymodel;Longitudinaldata;Square
tables;Triadicdistance

1.Introduction

Thispaperwillbeconcernedwithlongitudinalcategoricaldata,i.e.repeatedmeasurements
onanumberofobservationalunitswiththesameinstrument.Themaininterestinstudying
longitudinaldataiswhetherchangeoccurredand,ifso,whatthenatureofthechangeis.We
shallconfineourselvestothecaseofcategoricaldata.Ourquestionsconcernqualitativechange,
i.e.changesinattitude,opinion,behaviouroranyothercategoricalvariable.Thisistypically
differentfromcontinuousdatawhereitmightbepossibletodescribechangeintermsofbetter
orworse;forcategoricaldatadescriptionsareintermsof‘different’or‘thesame’.

Oncelongitudinalcategoricaldatahavebeencollectedtheycanberepresentedintransition
frequencytables,whicharecontingencytableswhereeachwaycorrespondstothecategoriesof
avariablemeasuredataspecifictimepoint(weadoptthewaymodeterminologyforthetables
ofCarrollandArabie(1980)).Thenumberoftimepointsdefinesthenumberofwaysofthe
transitionfrequencytable.Havingmeasuredagroupofpeopletwiceonacategoricalvariable,
asquaretransitionfrequencytablearises.Ifmeasurementsareobtainedatthreetimepointsthe
datacanbegatheredinathree-waycontingencytable,andsoforth.

AnexampleofsuchdataisobtainedfromUptonandSärlvik(1981)whodiscussedchanges
inpoliticalvotinginSweden.ThedataareshowninTable1.Therearefivepoliticalparties:
theCommunistsCOM;theSocialDemocratsSD;theCentrePartyC;thePeople’sPartyP;the
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Table 1. Swedish voting data representing voting
changes from 1964 (rows) to 1970 (columns)†

com sd c p con
COM (22) 27 4 1 0
SD 16 (861) 57 30 8
C 4 26 (248) 14 7
P 8 20 61 (201) 11
CON 0 4 31 32 (140)

†From Upton and Särlvik (1981).

Conservatives CON. These are the anglicized names following Upton and Särlvik (1981). The
rows correspond to the political parties in 1964 (in capital letters); the columns to the political
parties in 1970 (lower-case letters).

The focus will be on change, i.e. on the off-diagonal entries. The values on the diagonal are
within parentheses; for these cells special parameters (which are often called loyalty parameters)
will be included in the models to be developed.

The question, once we have such change data, is not whether there is association but what the
pattern of association looks like. We shall propose a model for these data based on Newton’s
law of gravity, which states that the force between any two objects in the universe is propor-
tional to the masses of the two objects and inversely related to the squared distance between the
two objects (Newton’s law of gravity will be discussed in more detail in the next section). This
deterministic model will be applied to the analysis of change where the objects in the universe
are the categories of the variable. The force between two objects is measured by the number of
respondents making a transition from one category to another. This number is not accurately
measured, however, since a sample is obtained from a population. Therefore, the law of gravity
is used as a probabilistic model assuming a multinomial sampling scheme (which is the usual
sampling scheme for such data). The force will be modelled by the mass of the two categories
and a function of the distance between the two objects.

The remainder of this paper is organized as follows. The next section discusses Newton’s law
of gravity in more detail. Section 3 describes the analysis of change in terms of Newton’s law
of gravity and introduces dynamic elements in the law to adapt for different data settings. After
introducing the dynamic elements it will be shown that the model is a reparameterization of
the RC(M) association model (Goodman, 1979, 1991). The usual identification constraints for
this model, however, are not suited to the analysis of change. A new way of identifying the
solution will be presented and finally the model will be applied to the data in Table 1. In Section
4 the model will be generalized to the case of multiple two-way tables. The gravity models that
are developed are related to conditional association models (Clogg, 1982), but again the usual
identification constraints are not suited to the analysis of change. Section 5 treats gravitational
models for three time points. These models are related to partial association models (Clogg,
1982). Identification and an application to empirical data will be discussed. We shall conclude
with discussion and reflection about the results obtained and show some limitations of the work
presented.

2. Newton’s law of gravity

One of the major laws of the natural sciences is Newton’s law of gravity:

‘All matter attracts all other matter with a force proportional to the product of their masses and inversely
proportional to the square of the distance between them’.
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Fig.1.Newton’slawofgravity:themassesofobjects1and2arerepresentedbytheareaofthecircles
andd12isthedistancebetweenthecentresofthetwoobjects

Thislawcanbewritteninaformulaas

Fij∝
m.i/m.j/

d2
ij

,.1/

whereFijdenotestheforcebetweenobjectsiandj,m.i/andm.j/arethemassesoftheobjects
iandj,andd2

ijisthesquareddistancebetweentheobjects.Amoregeneralformulationofthe
lawis

Fij∝
m.i/m.j/

g.dij/
,.2/

whereg.·/isg.x/=x2,butmayalsobesomeotherfunction.Agraphicalrepresentationisshown
inFig.1,wherethemassesarerepresentedbytheareaofacircle.Newtonexplainedawiderange
ofpreviouslyunrelatedphenomenabyusingthislaw:theeccentricorbitsofcomets,thetides
andtheirvariations,theprecessionoftheEarth’saxisandmotionoftheMoonasperturbedby
thegravityoftheSun.ThisworkmadeNewtonaninternationalleaderinscientificresearch.

Inthenextsectionweshallshowthatthelawofgravityapplieswelltotheanalysisofsocial
change.Therefore,firstsomeotherdefinitionsofthefunctiong.·/areprovidedanddynamic
elementsareintroduced.Themostgeneralmodelthatresultsisareparameterizationofawell-
knownmodelinstatisticsandsocialresearch,theRC(M)associationmodel(Goodman,1979,
1991).Itshouldbenoted,however,thatbythetimethatwearriveattheRC(M)association
modelmanypropertiesofrealforcesastheyareinthenaturalscienceshavebeenlost.Whatis
maintainedistheinterpretationintermsofmassanddistance,andtheanalogywithNewton’s
lawofgravityismeantmorelikeametaphorthanreality.

3.Theanalysisofchange

WherethetaskforNewtonwastoassesstheforceofthetwoobjectsoneachothergiven
theirmassandtheirdistance,wedealwiththereverseproblem.Weassumethateachobject
attractspeoplefromotherobjectswithsomeforce.Theresultantoftheseforcesisflowsof
peoplebetweenobjects.Theseflowscanbeconsideredmeasurementsoftheattractionalforces
betweenobjects,andthus(usingthelawofgravity)arethenumberofpeoplegoingfromone
objecttoanotherproportionaltothemassofthefirstobjecttimesthemassofthesecondobject
andinverselyproportionaltoafunctionofthedistancebetweenthetwoobjects.

InTable1itcanbeseenthatthereisalargenumberofpeople(57)whovotedfortheSocial
Democratsin1964andfortheCentrePartyin1970,sothereisalargeforcebetweenthese
twocategories.Similarly,theforcebetweentheCommunistsandtheConservativesissmall
(thefrequencyequals0).Moreover,theforceofonecategoryonanotherisnotequaltothe
reverse;forexample,theforceCommunists–SocialDemocratsequals27andtheforceSocial
Democrats–Communistsequals16.
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3.1. A Gaussian link
In Newton’s law of gravity the distance is defined by a three-dimensional Euclidean distance, i.e.
our universe is three dimensional. For the analysis of change the dimensionality is not known
in advance but will be denoted by P. For the data in Table 1, for example, it is likely that the
parties are differentiated on the standard ‘left–right’ dimension that is often found in political
systems. Furthermore, there might be another dimension that differentiates the five parties. In
Section 5, for example, we find a ‘rural–urban’ dimension on which the political parties differ.
Often the dimensions are interpreted after the solution has been found, on the basis of practical
knowledge of the data at hand. The co-ordinates of object i in P-dimensional space are given
by the vector z.i/ = .zi1, . . . , ziP /T. The z.i/s will, in turn, be collected in the I × P matrix
Z= .z.1/, z.2/, . . . , z.I//T. The squared Euclidean distance between objects i and j is given by

d2
ij.Z/=

P∑
p=1

.zip − zjp/2: .3/

Other distance measures might be used as well, e.g. any distance from the Minkowski family (see
Borg and Groenen (2005), chapter 17). Where in the law of gravity g.x/ = x2 we shall employ
g.x/ = exp.x2/, the Gaussian transformation or Gaussian link function (de Rooij and Heiser,
2005; Nosofsky, 1985), which is a monotone function. Again, like for the distance formulation,
other transformation functions might be used, but in Section 3.4 it will be shown that this func-
tion relates the law of gravity to a well-known model for the statistical analysis of contingency
tables.

3.2. Dynamic masses
As discussed above the measured forces are not symmetric, i.e. the force from Communist on
Social Democrats is measured to be 27, whereas the reverse force is 16. The law of gravity
assumes symmetric forces and the asymmetry is a form of ‘error’.

To deal with such asymmetries the model will be generalized in two ways. The first generaliza-
tion is to make the masses of the objects dependent on time. So, we deal with dynamic masses. It
is quite natural that masses change in the social sciences, i.e. an object might be popular at one
time point and unpopular at another. For example, in brand switching data some brands come
into fashion at one moment and go out of fashion another. When an object is popular it has
a large mass; when it is unpopular it has a small mass. For our model this means that objects
have a mass at each time point, and that mass will be denoted by mt.i/, the mass of object i at
time point t. In a graphical representation (like Fig. 1), each object would have two circles.

3.3. Dynamic positions
A second generalization is to make the positions time dependent. So, dynamic positions are
introduced into the model. An interpretation of a dynamic position is that the content of an
object has changed. For example, a political party might change its election programme after
it has lost dramatically in the last election or when a loss is in prospect, and thereby change its
relative position towards other parties. Each object has a position for each time point which is
denoted by zt.i/ = .zit1, . . . , zitP /T and the positions of all objects at time point t are gathered
in a matrix Zt = .zt.1/, zt.2/, . . . , zt.I//

T. The one-mode Euclidean distance (3) is replaced by a
two-mode Euclidean distance:

d2
ij.Z1; Z2/=

P∑
p=1

.zi1p − zj2p/2: .4/
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Inthegraphicalrepresentationeachobjectisshowntwice:onceforeachtimepoint.

3.4.Rewritingthemodel
Themodelwithdynamicmassesanddynamicpositionsis

Fij∝
m1.i/m2.j/

exp{d2
ij.Z1;Z2/}

:.5/

Thisgravitymodelcanberewritteninaformthatiswellknowninstatisticsandisoften
appliedinsociologicalstudies;theRC(M)associationmodel(Goodman,1979,1991).Byback-
transformingtheparametersofthismodel,estimatesofthemassesandco-ordinatesofourgrav-
itymodelareobtained.Furthermore,relationshipsofthiswell-knownmodeltoothermodelsfor
contingencytablesarewellestablished,andarethenalsovalidforourgravitymodel.However,
theusualgraphicaldisplaysfortheRC(M)associationmodelaresusceptibletomisinterpreta-
tion(forexamplesseedeRooijandHeiser(2005)),whereasourinterpretationismoreintuitive.
Thetransformationfromgravitytoassociationmodelisasfollows(deRooijandHeiser,2005):

Fij∝
m1.i/m2.j/

exp{P∑
p=1

.z2
i1p+z2

j2p−2zi1pzj2p/}
∝

m1.i/m2.j/

exp(P∑
p=1

z2
i1p)exp(P∑

p=1
z2

j2p)exp(P∑
p=1

−2zi1pzj2p):.6/

Definingα.i/=m1.i/=exp.Σ
P
p=1z2

i1p/andβ.j/=m2.j/=exp.Σ
P
p=1z2

j2p/,weobtain

Fij∝
α.i/β.j/

exp(P∑
p=1

−2zi1pzj2p)
∝α.i/β.j/exp(P∑

p=1
2zi1pzj2p)

∝α.i/β.j/exp(P∑
p=1

φpμipνjp),.7/

withzi1p=φ
1=2
pμip=√2andzj2p=φ

1=2
pνjp=√2.Thelastlineinexpression(7)isGoodman’s

(1979,1991)RC(M)associationmodel.Insummary,westartedwith(anadaptationof)New-
ton’slawofgravity,introduceddynamicelementsandendedupwiththiswell-knownmodel.
TheRC(M)associationmodelisareducedrankmodelfortheassociationwhichequalsthe
saturatedmodelwhenthedimensionalityequalsI−1andwhichequalsthe(quasi-)indepen-
dencemodelwhenthedimensionalityis0.Themodelwithstablepositionsisthehomogeneous
RC(M)associationmodelandimposesasymmetryrestrictionontheassociation,andthusisa
specialcaseofthequasi-symmetrymodel(Caussinus,1965).Themodelwithstablemassesand
positionsisaspecialcaseofthesymmetrymodel.

Sinceourfocusisontheoff-diagonalentriesweneedparametersforthediagonalentriesof
thetable.Theseareloyaltyparametersforeachclass,i.e.themodelbecomes
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theseconceptsareusedfortheanalysisofchange.Forchangefromonetimepointtoanother
thesemodelsgiveaverynaturaldescriptionofthechangeprocess.
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AppendixA:Softwarenote

WeusedtheprogramLEMtoobtainfittedfrequencies.Thescalingandlocationswerefoundbyusing
MATLAB.AMATLABshieldwasbuiltaroundLEMsuchthatnomanualcopyingisneededinperform-
ingtheanalysis.OnrequesttheMATLABandLEMfilescanbeobtainedfromtheauthor.
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Fij ∝ m1.i/m2.j/ exp.δijλi/

exp{d2
ij.Z1; Z2/} , .8/

where δij equals 1 if i = j and 0 otherwise. The λi are object-specific loyalty parameters, of
which there are I. The effect of these parameters is that the observations on the diagonal do not
influence the masses and the distances, i.e. the gravity model pertains to change. Another effect
of these parameters is that the expected frequencies equal the observed frequencies for these
cells.

3.5. Distances, distances and inner products
The RC(M) association model is often thought of as a model for ordinal data (although, strictly,
nowhere is an ordinal restriction imposed on the scale values) and the parameters μip and νjp

are often interpreted in terms of distances. This raises the question what is new about the dis-
tance interpretation in the gravity model. To answer this question we should distinguish between
within-set distances and between-set distances. In the RC(M) association model distances within
the set of row points can be interpreted such that, when μi and μi′ , with μi = .μi1, . . . , μiP /T, are
(approximately) equal, categories i and i′ have the same pattern of association to the column
categories. To interpret the relationship between the row and column sets of categories in the
RC(M) association model an inner product rule must be used, where the association equals
the product of the length of the two vectors μi and νj multiplied by the cosine of the angle
between these two vectors. The parameterization in terms of Newton’s law of gravity provides
a between-set distance interpretation, i.e. an interpretation of the distance between z1.i/ and
z2.j/.

3.6. Identification constraints
The RC(M) association model is not identified; it needs location, scaling and cross-dimensional
constraints on the row and column scores. Usually the scores are centred, the sum of squares is
set equal to 1 and the dimensions are made orthogonal. For the analysis of change, however,
these standard identification constraints prevent substantial conclusions.

Let us denote the centred row scores by z̃1.i/. It is possible to transform these centred row
scores linearly by z1.i/ = T z̃1.i/ + a for diagonal T and a vector a, and to adapt accordingly
z2.j/=T−1 z̃2.j/−a and the estimates of the masses without changing the expected frequencies.
The vector a changes the mean position of the row points on each dimension whereas the diag-
onal matrix T changes the spread of the row points on each dimension. These transformations,
however, do not change the order or relative spacings between row points; they are a dimen-
sionwise linear transformation of the row points. The centred column points are transformed by
using the inverse of this linear transformation. To obtain optimal location (a) and scalings (T)
the correlation between squared distances (d2

ij .Z1; Z2/) and F̂ ij=α̂iβ̂j is minimized. This can
be done by using the procedures that are described in de Rooij (2007).

It is important that the total mass is equal over the time points, i.e. that the total mass at the
first time point is equal to the total mass at the second time point. Therefore the identification
constraints on the masses were chosen such that this restriction is true. The mass will be rep-
resented by the area of the circle. To draw the circles we shall therefore use a radius equal to
r.i/=√{m.i/=π}.

3.7. Estimation
Several researchers have discussed estimation of the RC(M) association model (Goodman,
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The generalization to tables for three time points needed a further expansion of the law of
gravity. Distances between three points, triadic distances, were discussed and their relationship
to partial association models was shown. Again the triadic distance is easier to understand than
the sum of three inner products, as modelled in the partial association models. Although this
representation is moving away from Newton’s law of gravity, the basic ingredients are still mass
and distance. The models that were discussed can theoretically be generalized to more time
points by using tetradic (or polyadic) distances, which can be defined as sums of all (squared)
dyadic distances (as in equation (16)). However, the relationship between partial association
models and triadic distance models as shown in equations (18) and (19) does not generalize to
more time points (variables). In that case the gravity models become more restricted than the
association models.

The triadic distance models are good in showing and representing change. They lack a formal
change mechanism, however, as in for example (latent) Markov models. However, the triadic
gravity models can be conceived as second-order Markov models with restrictions, and when
interpreted by using the correct temporal ordering there is an influence of the first time point on
the second, and an influence of the first and second time points on the third. We provided some
examples of interpretation at the end of Section 5.5. For triadic three-mode distances similar
statements about conditional odds can be obtained.

The triadic gravity models are not collapsible, i.e. the change from time point 1 to 2 in triadic
distance models is different from the change that is obtained when the table was collapsed over
the third time point. A model is collapsible when the conditional association equals the marginal
association, and this is generally so for conditional independence models (Bishop et al., 1975).
For the example that was discussed in Section 5 this would be the non-fitting first-order Markov
model. A possible reason for the failure of this model is subject heterogeneity, which is due
to ignoring relevant covariates in the analysis (Agresti (2002), page 478). In other words, the
group of people who make the same change from time point 1 to 2 do not form a homogeneous
group. By using the choices that are made at the third time point we obtain more reliable change
estimates.

In this paper all models were estimated with LEM. This yielded some problems; for example,
for square tables the model with stable masses but dynamic positions cannot be fitted by using
software for association models. Furthermore, the models for observations on three time points
could not be estimated in more than two dimensions, and for the model for multiple two-way
tables sometimes a negative association coefficient occurs for a particular layer which under
a distance model is not possible. To deal with such problems special software should be writ-
ten.

We tried to build models for the whole data set. Another way of analysing square tables is
to decompose the table into a symmetric part and a skew symmetric part, and these are then
analysed separately. Often this is done by using least squares techniques. The best known of such
procedures is that due to Gower (1977) and discussed also in Constantine and Gower (1978).
Bilinear forms for skew symmetry were discussed in van der Heijden and Mooijaart (1995). For
a treatment of skew symmetry in the three-way case see de Rooij and Heiser (2000).

The use of gravity models to explain social phenomena is not new. Tobler (1976), for exam-
ple, used a social gravity model for migration data. Gravitational models are also often used in
economic and transportational studies (see, for example, Sen and Smith (1995)). In these cases,
however, the distances are often known in advance, i.e. they are real distances, or the distances
are measured by several variables. In our case, however, the distances must be estimated from
the data. The fact that Newton’s gravity model is used more often in other areas is due to its
simple and understandable nature: mass and distance are easily grasped concepts. In this paper
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Fig.2.GraphicalrepresentationoftransitionsbetweenSwedishpoliticalparties:,COM,SD,C,P,CON,
massandpositionsofthepartiesin1964;,sd,com,c,con,p,massandpositionsofthepartiesin1970

1979;Becker,1990;Haberman,1995).Byback-transformingusingequations(7)and(6)we
canobtainestimatesofourmodel(5).TheprogramLEM(Vermunt,1997)willbeusedtofit
themodels;thetransformationtoadistancemodelandthewayofidentifyingthesolutionare
performedinMATLAB(Mathworks,2006).Themodelwithstablemassesbutdynamicposi-
tionscannotbewrittenasanassociationmodelandthuscannotbeestimatedwithavailable
softwareforassociationmodels.

3.8.ApplicationtoSwedishpoliticsdata
ThedatainTable1wereanalysedbyusingthegravitymodelsproposed.Firstsomebenchmark
modelswerefitted.Thequasi-independencemodel,thesymmetrymodelandthequasi-symme-
trymodeldonotfitthesedata(X2-valuesrespectively103.13,78.03and22.86;G2101.12,83.13
and23.37,with11,10and6degreesoffreedomdf).Sincethequasi-symmetrymodeldoesnotfit
thedataweexpectthatthemodelswithstablepositionsdonotfiteither,whichisindeedthecase.
WithonedimensionX2=28:97,G2=27:29anddf=7andwithtwodimensionsthefitbarely
increased:X2=22:88,G2=23:40anddf=4.Withdynamicpositionsagoodfitwasobtainedina
singledimension,X2=4:96,G2=5:92anddf=4.ThesolutionisshowninFig.2.Weseeseveral
positionalchangesthere:in1964thepositionsofthefivepartiesareasexpectedontheleft–right
dimension,andalsoasdescribedbyUptonandSärlvik(1981).Orderedfromlefttorightthe
Communists,theSocialDemocrats,theCentreParty,thePeople’sPartyandtheConserva-
tives.

Thepositionalchangesfrom1964to1970canbesummarizedasfollows:theCommunists
andSocialDemocratsgroupedtogetherontheleftwingwhereastheConservativesandPeople’s
Partygroupedontherightwing.EspeciallytheSocialDemocratsmadeabigchangetotheleft.
TheCentrePartymovedfromthecentretoamoreright-wingposition.Itseemsthatsome
polarizationhappenedthatdistinguishesthetwoleft-wingpartiesfromthethreeotherparties.
SuchagroupingwasalsofoundinUptonandSärlvik(1981).Althoughitmayseemstrange
thattheSocialDemocratsaremoreleftistthantheCommuniststhishasalsobeenobservedat
severalpointsintimebyLewinetal.(1972),page226.

ConcerningthemassesitcanbeseenthatthemassesoftheCommunists,thePeople’sParty
andtheSocialDemocratsstaythesame,theCentrePartyisthewinnerandtheConservative
Partyisthepoliticalpartythatlostmass.

4.Multipletwo-waytablesandmultipleuniverses

Uptothispointdiscussionhasbeenconfinedtotwo-waytables.Intheremainderofthispaper
weshallgeneralizethemodelstothree-waytables.Thissectiontreatsthecaseofmultiple
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againthatthisreversalisnotduetothenewidentificationconstraints.Thesamereversalin1968
wasfoundbyLewinetal.(1972),page220,andcanpossiblybeexplainedby‘theconservative
partyinthesixtiesisourbestexampleofapartyinthethroesofacrisisofidentity’(Lewin
etal.(1972),page285),whichisalsoapparentbytheirchangeofnamefrom(literaltranslation)
‘TheRightParty’to‘TheModerates’(seeUptonandSärlvik(1981)).Whenlookingatthe
1968–1970data,however,thisreversalofthe1968positionsisnotpreserved.Finally,notethat
theanalysesofthetwodatasetspertainingtochangesfrom1964to1970give(almost)identical
results.

7.Discussion

TheanalysisofchangewasdiscussedintermsofNewton’slawofgravity.Itwasshownthata
well-knownandoften-appliedmodelfortheanalysisofcontingencytables,theRC(M)associ-
ationmodel,canbeinterpretedintermsofmassanddistance,andthushasaninterpretation
thatissimilartothelawofgravity.Bothmassesandpositionscanbestableaswellasdynamic.
Thesedynamicelementswerediscussedextensively;dynamicmassesrelatetopopularityof
objectswhichmightchangewhereasdynamicpositionsrelatetocontentchangesofobjects
(inthecaseofstablemassesnochangeincontenttookplace).TheRC(M)associationmodel
needslocationandscalingconstraintsforidentification.Theusualconstraints,however,are
troublesomeintheanalysisofchange,andthereforeanewwayofidentifyingthesolutionwas
discussed.Thisnewwayofidentifyingthesolutionmakesitpossibletointerpretthesolution
intermsofpolarization,aswedidintheapplication.However,ifeverything(i.e.allvotersand
allparties)makesthesameshiftinonedirection,ourmethodwillnotfindthisshiftinlocation
sinceallrelativepositionsremainthesame.Anexampleofsuchasituation,asarefereepointed
out,isthatasaconsequenceofworldevents(e.g.globalwarming)thenationbecomesmore
leftorrightwing(i.e.‘green’).Allpartieswillfeelthisshiftandwilladapttheirstancesasa
consequence.Thiscommonshiftwillnotbenotedbyourgravitymodel.If,however,some
partiesshiftmorethanothersthenwewillseethattherelativepositionschange.

ThenewinterpretationintermsofmassanddistanceoftheRC(M)associationmodelis
simplesincebothmassanddistancearefairlywell-understoodconcepts,atleastbetterthan
maineffectsandinnerproducts(projection).IntheexamplesthatwereshowninSection3(and4)
aone-dimensionalsolutionwasobtainedinwhichtheinterpretationofthegraphicaldisplay
intermsofdistancesismucheasierthantheproductoflengthsofvectors(asintheinnerprod-
uctparameterization).So,anewinterpretationtoawell-knownmodelwasprovided,which
mightbeofgreatvalue,sincethenewinterpretationhasrootsinthenaturalsciencesandiswell
understoodbymanypeople.

Thegravitymodelsthatwereproposedcanbeconsideredageneralizationoftheloyalty–
distancemodelsthatwereproposedbyUptonandSärlvik(1981).Comparedwiththeirmodel
ourmodelisnotdependentonanaprioriorderingoftheobjects;ourmodelcanbeusedfor
multidimensionalsolutions;andourmodelallowsforchangingpositionsoftheobjects.Itcan
beassumedthatthesolutionsthatareobtainedwithourunidimensionalmodelwithstable
positionsandtheloyalty–distancemodelofUptonandSärlvikareapproximatelythesame.

Afterthecaseofsquarecontingencytableswelookedatthecasewheretherearemultiple
tables.BridgesbetweenconditionalassociationmodelsandweightedEuclideandistances
(theINDSCALmodel)wereshown,butalsoothersolutions(furtherorlessrestricted)were
discussedforsuchdata.Asforthesquaretablecase,wedevelopedanewinterpretationin
termsofmassanddistance.AsforthestandardRC(M)associationmodeltheidentification
constraintshadtobeadapted;wedevelopedamannertodoso.
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two-way tables, e.g. transition data that are obtained in different countries, or different groups
or at different time points.

4.1. The model
In this section we shall develop models for multiple two-way tables. Each of these tables can be
modelled by the gravity models of the previous section, resulting in a universe with objects and
masses for each layer (k =1, . . . , K) of the table. The most general model is

Fijk ∝ m1k.i/m2k.j/

exp{d2
ij.Z1k; Z2k/} , .9/

where mtk.i/ is the mass of object i at time point t in layer k and the vector ztk.i/ gives the
position of object i at time point t in layer k, i.e. each layer is represented by the gravity model
of the previous section.

Restrictions can be imposed to relate the different universes. For example, the masses of
different layers or the co-ordinates of different layers can be constrained to be equal or equal
up to a scaling constant. The most natural choice is to restrict the co-ordinates (Ztk). Examples
of restrictions are

Ztk =ZtWk, .10/

Ztk =ZWk, .11/

Ztk =Zt , .12/

Ztk =Z, .13/

where Wk is a diagonal matrix, specifying positive weights that stretch or shrink the dimensions
of each layer, and Z is a matrix with co-ordinates of the points, which can be dependent on time
(Zt) or not (Z). When wppk >1, dimension p for layer k is stretched, meaning that for layer k the
objects are more differentiated on this dimension. When wppk <1 the dimension shrinks, i.e. for
layer k the objects are less differentiated on dimension p. The restriction in equation (11) defines
the well-known INDSCAL-type of three-way distance model (Carroll and Chang, 1970), with
stable positions of the categories for each layer of the table. The first restriction, equation (10),
defines a two-mode version of the INDSCAL model, i.e. an INDSCAL distance model with
dynamic positions. The third restriction, equation (12), defines two-mode distances which are
equal across the layers and the fourth restriction, equation (13), defines one-mode distances that
are equal across the layers. An example of a model with stable positions within each layer that
is stretched or shrunk in the different layers and with equal masses over the layers can be found
in de Rooij (2001).

4.2. Rewriting the model
Like the model for two-way tables this model can be written as an association model. In this case
we deal with the conditional association models as proposed by Clogg (1982) and Becker and
Clogg (1989). As in the two-way case, the link between the two types of models makes available
software for fitting our gravity models and helps in understanding relationships between our
gravity models and other models for contingency tables. The formulae for transforming one
model into the other are similar to expressions (6) and (7). For example, with the restriction in
equation (10) we have
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in the data matrix. Moreover, these diagonal elements are not necessarily fitted perfectly as is
the case with object-specific loyalty parameters. With these settings the model with dynamic
positions has 3 degrees of freedom, whereas the model with stable position has 5.

For all data sets, except for the 1968–1970 data, dynamic positions are needed. For the 1968–
1970 data the model with stable positions provides an adequate fit. The results are shown in
Fig. 5. Figs 5(a)–5(c) pertain to the marginal tables that were obtained from Table 3, whereas
Fig. 5(d) pertains to the data from Table 1 but without the Communists. From Fig. 5 it can be
concluded that the positions of the parties in 1964 and 1970 are in all cases roughly the same.
Again, as in Fig. 2, the Centre Party, the People’s Party and the Conservatives seem to cluster
together over time, which is mostly due to the period 1964–1968, since this effect is visible in
both the analysis of the 1964–1968 and the 1964–1970 data. Concerning the 1968 positions in
the analysis of 1964–1968 data there is a reversal of the People’s Party and the Conservatives
at the right-hand side of the scale, which cannot be found back in the 1968–1970 data. Note
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Fig. 5. Comparison of results from four two-way tables ( , masses for 1964; , masses for 1968; , masses
for 1970): (a) 1964–1968 marginal table (obtained from the three-way table); (b) 1968–1970 marginal table
(obtained from the three-way table); (c) 1964–1970 marginal table (obtained from the three-way table);
(d) 1964–1970 result for Table 1 without the Communists
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Fijk∝
m1k.i/m2k.j/

exp{d2
ij.Z1;Z2;Wk/}

∝
m1k.i/m2k.j/

exp{∑pw2
kp.zi1p−zj2p/2}

∝
m1k.i/m2k.j/

exp(∑pw2
kpz2

i1p+w2
kpz2

j2p−2w2
kpzi1pzj2p)

∝
m1k.i/

exp(∑pw2
kpz2

i1p)
m2k.j/

exp(∑pw2
kpz2

j2p)exp(∑p2w2
kpzi1pzj2p)

∝αikβjkexp(∑pφkpμipνjp),.14/

wherethedifferencebetweenzi1pandμipisascalingfactor√2andφkp=w2
kp.Thelastlinein

expression(14)istheconditionalassociationmodel(Clogg,1982;BeckerandClogg,1989).
Model(9)representsareducedrankassociationmodelforeachtwo-waytable.Byusing

restrictions(10)–(13)theco-ordinatesofthedifferentlayersarefunctionsofeachother.With
restrictions(11)and(13)symmetryrestrictionsontheassociationareimposed,whereasrestric-
tions(12)and(13)resultinmodelswithoutthree-wayassociation.

4.3.Identification
Theconditionalassociationmodelneedslocationandscalingconstraintsbutnocross-dimen-
sionalconstraints(Wong(2001),page207).Similartothesituationthatwasdiscussedinthe
previoussection,newlocations(a)andscalings(T)arefoundbyminimizingthecorrelation
betweentheelementseij,definedas

eij=∑kF̂ijk

α̂ikβ̂jk

,

andthesquaredunweightedtwo-modedistances.Theone-modedistancemodels((11)and(13))
areidentified.

ThedegreesoffreedomfortheconditionalassociationmodelswerediscussedinWong(2001),
pages205–207.Forourmodelsthesenumbersshouldbeadaptedfortheloyaltyparametersfor
thenon-movers,i.e.thecellfrequenciesrepresentedwithinparenthesesinTable2.Themodel
thatisgiveninexpression(9)ismultipliedbythetermexp.δij|kλik/whereδij|kequals1ifi=j

and0otherwise.ThereareIKoftheseparameters.

4.4.Estimation
ConditionalassociationmodelscanbeestimatedwithLEM(Vermunt,1997).Fromtheexpected
frequenciesweobtainanidentifiedsolutionwithaMATLABprocedure.

Acautionarynoteisinorderhere:whenthemodelwithconstraint(10)or(11)isestimated
byusingtheconditionalassociationmodeltoobtainestimates,althoughnotregularlyencoun-
tered,negativeassociationparametersmayoccurforsomelayer.Inthatcasethereisnota
distancerepresentationoftheconditionalassociationmodel.Atraditional(i.e.fortheassoci-
ationmodel)graphicaldisplayoftheassociationmustalsoreflectthedimensionfortherow
orcolumnpointsforthespecificlayer.Ifsuchanegativeassociationcoefficientoccursitis

152M.deRooij

FortheinterpretationasamodelofchangeconsidertheoddsofchoosingtheSocialDem-
ocratsversustheCentrePartyatthethirdtimepointgiventhePeople’sPartyatthefirstand
Conservativesatthesecondtimepoint.Theoddsare

πP,CON,SD

πP,CON,C
=

m1.P/m2.CON/m3.SD/exp.−d2
P,CON,SD/

m1.P/m2.CON/m3.C/exp.−d2
P,CON,C/

=
m3.SD/

m3.C/

exp.−d2
CON,SD/

exp.−d2
CON,C/

exp.−d2
P,SD/

exp.−d2
P,C/

:

So,theknowledgethatatthefirsttimepointthechoicewasforthePeople’sPartychangedthe
oddsbyafactorexp.−d2

P,SD/=exp.−d2
P,C/=0:50.

AsanotherexampleconsidertheoddsofthePeople’sPartyversustheConservativesgiven
twicetheSocialDemocrats:

πSD,SD,P

πSD,SD,CON
=

m1.SD/m2.SD/m3.P/exp.−d2
SD,SD,P/

m1.SD/m2.SD/m3.CON/exp.−d2
SD,SD,CON/

=
m3.P/

m3.CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

=
0:14
0:05

exp.−1:53/

exp.−2:06/

exp.−1:53/

exp.−2:06/

=
0:14
0:05

0:22
0:13

0:22
0:13

=2:8×1:69×1:69

=7:98:

So,aftertwicechoosingtheSocialDemocratstheoddsarelargelyinfavourofthePeople’s
PartyinsteadoftheConservatives,whichcanbejudgedfromthelargermassofthePeople’s
PartyandthesmallerdistancefromtheSocialDemocratstothePeople’sPartycomparedwith
thedistanceSocialDemocrats–Conservatives.

6.Swedishpoliticsrevisited

ThetwoexamplesthatwerediscusseddealtwithvotesfromSwedenintheperiod1964–1970
(seeSections3.8and5.5).ThefirstexampleincludedtheCommunistsforwhichwehavenodata
inthesecondexample.Theconclusionfromthefirstexample(1964–1970)wasthattherehave
beenmajorchangesinthepositions,whereastheconclusionfromthesecondexample(1964–
1968–1970)isthatthepositionsareunchanged.Thesesolutionscannotreallybecompared,
sincethefirstshowsmarginalassociationwhereasthesecondshowsconditionalassociation.It
iswellknownthatthesetwodifferinmanycases(seeAgresti(2002),chapter2).

Tocomparethepositionsfurtherweanalysedfourtables:eachofthetwo-waymarginaltables
ofthe1964–1968–1970data(Table3)andthe1964–1970data(Table1)butwithouttheCom-
munists.Forthese4×4tables,theone-dimensionalmodelwithdynamicpositionshas0degrees
offreedom,i.e.itisasaturatedmodel.Tomakecomparisonswechangedfromobject-specific
loyaltyparameterstoasingleoverallloyaltyparameter(i.e.λ1=λ2=...=λI),theeffectof
whichisthatthemassesanddistancesnowalsocontributetothefitofthediagonalelements
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Table 2. Mobility data from three countries:USA, UK and Japan†

Country Father Son

un ln um lm fa
US UN (1276) 364 274 272 17

LN 1055 (597) 394 443 31
UM 1043 587 (1045) 951 47
LM 1159 791 1323 (2046) 52
FA 666 496 1031 1632 (646)

UK UN (474) 129 87 124 11
LN 300 (218) 171 220 8
UM 438 254 (669) 703 16
LM 601 388 932 (1789) 37
FA 76 56 125 295 (191)

Japan UN (127) 101 24 30 12
LN 86 (207) 64 61 13
UM 43 73 (122) 60 13
LM 35 51 62 (66) 11
FA 109 206 184 253 (325)

†From Yamaguchi (1987): UN, upper non-manual; LN, lower non-
manual; UM, upper manual; LM, lower manual; FA, farm.

reasonable to assume that the model does not provide a good description of the association for
that specific layer.

4.5. Application
To illustrate, the gravity model will be applied to data from Yamaguchi (1987) (see also Caus-
sinus and Thelot (1976)), where occupational mobility is given for three countries: the USA,
the UK and Japan. The data are reproduced in Table 2. Each occupational mobility table has
five occupational categories: upper non-manual UN; lower non-manual LN; upper manual UM;
lower manual LM; farmer FA. Again the focus is on change and for all cells within parentheses
loyalty parameters are included in the models to be discussed.

Two benchmark models for these data are the conditional quasi-independence model and the
no-three-way interaction model. The conditional quasi-independence model of father and son
given country has X2 =1409:76 and G2 =1336:20 with df=33 and the no-three-way association
model has X2 =36:24 and G2 =36:21 with df=22. The latter model with symmetry restrictions
on the father–son association term has X2 =125:24 and G2 =106:67 with df=28 (the degrees of
freedom in the latter two models are computed by adding the number of boundary parameters
to the usual degrees of freedom). The last model shows that the assumption of a symmetric
association pattern is not tenable, i.e. a two-mode distance model will be needed.

The one-dimensional model with dynamic masses and dynamic positions constrained to be
equal for the three layers (the restriction which is defined by equation (12)) fits the data mar-
ginally (X2 = 37:75, G2 = 37:72 and df = 26), which is reasonable considering the large sample
size. The solution is shown in Fig. 3.

The major positional change is that of the farmer category, which is for the fathers at the right
but for the sons in the middle, closer to the non-manual categories. When looking at the masses
it can be seen that the USA and the UK have a similar pattern, whereas the pattern in Japan is
typically different. In the USA and the UK the non-manual classes gained mass, whereas the
lower manual and farmer classes lost mass. In the USA the upper manual class gained mass
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Fig. 4. Graphical representation of transitions between Swedish political parties from 1964 to 1968 to 1970
(the horizontal dimension can be interpreted as the traditional left–right dimension, whereas the vertical
dimension can be interpreted as a rural–urban dimension): �, mass at 1964; , mass at 1968; , mass at
1970

is between the Social Democrats, the Centre Party and the Conservatives (d2
ijk =4:79), whereas

the smallest is between the Centre Party, the People’s Party and the Conservatives (d2
ijk =1:84).

The other two triadic distances are d2
ijk = 4:16 for the combination Social Democrats, Centre

Party and People’s Party and d2
ijk =3:63 for the combination Social Democrats, People’s Party

and Conservatives. Also triples with a recurring party have a triadic distance, which is in the
triadic one-mode distance the square root of twice the squared dyadic distance. Since these are
often smaller than the triadic distances between three different parties, the pattern is such that
more people transit between two than between three parties.

Concerning the masses we see that the Social Democrats first stay stable but then lose mass,
the Centre Party gains mass twice, the People’s Party first loses and then regains mass, and
finally the Conservatives lose mass twice.

The horizontal dimension is the traditional left–right dimension, where again the Centre
Party, the People’s Party and the Conservatives group on the right-hand side. The vertical
dimension differentiates the Centre Party from the other parties and can be understood as a
rural–urban dimension since the Centre Party used to be the Agrarian Party, attracting many
farmers and people from the small villages (Lewin et al. (1972), page 221).
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Fig.3.GraphicalrepresentationofoccupationalmobilitydatafromYamaguchi(1987)(,UN,LN,UM,LM,
FA,massandpositionsofthecategoriesforthefathers;,un,ln,fa,um,lm,massandpositionsofthe
categoriesforthesons):(a)USA;(b)UK;(c)Japan

whereasintheUKthiscategorylostmass.InJapanthefarmerslostmasswhereasallother
categoriesgainedmass.

5.Generalizationstochangeoverthreetimepoints

5.1.Themodel
Abovewetreatedmodelsfortwotimepoints.Often,however,dataaregatheredatmoretime
points.Forthreetimepointsagravitymodelcanbebuiltbyusingtriadicdistancemodels
(deRooijandGower,2003;GoweranddeRooij,2003;deRooijandHeiser,2000,Heiserand
Benanni,1997;Daws,1996;JolyandLeCalvé,1995;Coxetal.,1991;PanandHarris,1991),
modelsthatdefineadistancebetweenthreepointssimultaneously.Anextensionofmodel(5)is

Fijk∝
m1.i/m2.j/m3.k/

exp{d2
ijk.Z1;Z2;Z3/}

:.15/
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Table3.Swedishvotingdatarepresentingvoting
changesfrom1964to1968to1970

196419681970party
partyparty

SDCPCON
SDSD(812)27165

C52060
P2340
CON3342

CSD21610
C3(216)62
P0370
CON0904

PSD15280
C13780
P117(157)4
CON02126

CONSD2001
C01314
P03171
CON01211(126)

Asinthetwo-waytablestheforcefromatobwasnotequaltotheforcefrombtoa;inthe
three-waytabletheforceabcisnotequaltotheforcesacb,bac,bca,cabandcba.Thefocus
isonthemovers,meaningthatsubjectswhomadethesamechoiceatallthreetimepointsare
excludedfromtheanalysiswiththegravitymodel,byincludingloyaltyparametersforthecells
withinparentheses.

Somebenchmarkmodelsaretheno-three-wayassociationmodel,whichhasX2=27:13and
G2=29:00withdf=23withaBayesianinformationcriterion(BIC)statisticof−141.40.With
symmetryrestrictionsontheassociationtermsweobtainX2=47:25andG2=49:49with
df=32withaBICstatisticof−187.60.Thelattermodeljustdoesnotfit:p=0:04byusingthe
X2-statistic.Anotherbenchmarkmodelisthefirst-orderMarkovmodel;ithasX2=427:04and
G2=207:33withdf=36.ItsBICstatisticequals−59.39.

Applicationofthegravitymodelswithstablepositions(triadicone-modedistance)gives
withonedimensionX2=166:97andG2=180:06withdf=47andX2=138:16andG2=138:07
withdf=45withtwodimensions.UsingdynamicpositionsX2=116:00andG2=131:25with
df=41intheone-dimensionalsolutionandX2=74:36andG2=80:86withdf=33inthe
two-dimensionalsolution.

LookingatBICstatisticsweobtainthefollowing.Forthemodelwithstablepositionsin
onedimensiontheBICstatisticequals−168.17,whereasintwodimensionsitis−195.34.With
dynamicpositionsinonedimensiontheBICstatisticis−172.52,andintwodimensions
itis−163.64.

Fig.4showsthemodelwiththelowestBICstatistic,thetwo-dimensionalmodelwithdynamic
massesbutstablepositions.Thisisamodelwithathree-waysymmetricassociationpattern,
i.e.allasymmetryinthedataiscapturedbythemasses.WeseethatthePeople’sPartyand
theConservativesarecloseinspace(d2=0:04),whereastheSocialDemocratsarefarfrom
allotherparties(d2=1:78,d2=1:53andd2=2:06totheCentreParty,People’sPartyand
Conservativesrespectively).TheCentrePartyisclosertothePeople’sParty(d2=0:85)andthe
Conservatives(d2=0:96)thantotheSocialDemocrats(d2=1:78).Thelargesttriadicdistance
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Different forms of d2
ijk.Z1; Z2; Z3/ can be considered. de Rooij and Gower (2003) provided an

extensive description of possibilities plus the geometry of the options. A natural choice in the
current framework is to consider the generalized Euclidean model, in which case d2

ijk is defined
as

d2
ijk.Z1; Z2; Z3/=d2

ij.Z1; Z2/+d2
ik.Z1; Z3/+d2

jk.Z2; Z3/, .16/

where each dyadic distance is defined as in equation (4). The interpretation of a triadic distance
is facilitated when the isocontours are known, which are the lines with constant triadic distance
with two fixed points. The isocontours for the generalized Euclidean model are circular around
the centre of the two fixed points (de Rooij and Gower (2003), Fig. 3) just like the isocontours
for a regular Euclidean distance. The distance that is defined in equation (16) is a triadic three-
mode distance, where categories have dynamic positions as before in the two-mode distance.
The positions can be constrained to be stable; then the triadic one-mode distance is obtained,
in which case Z1 =Z2 =Z3 =Z.

5.2. Rewriting the model
Model (15) can be rewritten as a partial association model (Clogg, 1982) as follows:

Fijk ∝ m1.i/ m2.j/ m3.k/

exp{d2
ijk.Z1; Z2; Z3/}

∝ m1.i/m2.j/m3.k/

exp{d2
ij.Z1; Z2/+d2

ik.Z1; Z3/+d2
jk.Z2; Z3/}

∝ m1.i/m2.j/m3.k/

exp
(∑

p
z2

i1p + z2
j2p −2zi1pzj2p + z2

i1p + z2
k3p −2zi1pzk3p + z2

j2p + z2
k3p −2zj2pzk3p

)
∝ m1.i/m2.j/m3.k/

exp
(∑

p
2z2

i1p +2z2
j2p +2z2

k3p −2zi1pzj2p −2zi1pzk3p −2zj2pzk3p

) : .17/

Defining

α.i/=m1.i/= exp
( P∑

p=1
2z2

i1p

)
,

β.j/=m2.j/= exp
( P∑

p=1
2z2

j2p

)
and

γ.k/=m3.k/= exp
( P∑

p=1
2z2

k3p

)
we obtain

Fijk ∝α.i/β.j/γ.k/ exp
(∑

p
2zi1pzj2p +2zi1pzk3p +2zj2pzk3p

)
: .18/

The partial association model with restricted row, column or layer terms such that the row
scores are equal in the association with the columns and with the layers, and similarly for the
column scores and layer scores, is
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Fijk ∝α.i/β.j/γ.k/ exp
(∑

p
φ1pμipνjp +φ2pμipκkp +φ3pνjpκkp

)
: .19/

Model (18) can be obtained from this by defining

zi1p = apμip√
2

,

zj2p = bpνjp√
2

,

zk3p = cpκkp√
2

where ap =√
.φ1pφ2p=φ3p/, bp =φ1p=ap and cp =φ2p=ap.

Again, the link between the gravity and association model makes software available for fitting
the gravity model and provides insight into the relationships between our gravity model and
other models for contingency tables.

5.3. Identification
For the partial association models location constraints are necessary for each variable, whereas
scaling and cross-dimensional constraints are necessary for only one of the three variables
(Anderson and Vermunt (2000), page 95, and Wong (2001), page 204). In the triadic three-mode
model we can find new locations for the variable at the first time point a, for the second time point
b and for the third time point c =−.a +b/ by minimizing the correlation between F̂ ijk=α̂iβ̂j γ̂k

and the squared triadic distance d2
ijk.Z1; Z2; Z3/. The triadic one-mode model, i.e. the model

with stable positions, is identified.
As before we focus on change by including loyalty parameters in the model for the people who

made the same choice on all three occasions. In other words, the model defined in expression
(15) is multiplied by the term exp.δijkλi/, where δijk equals 1 if i= j = k, and 0 otherwise. The
λi are loyalty parameters, of which there are I.

5.4. Estimation
In LEM it is not possible to estimate the partial association models in more than two dimen-
sions. In most situations in which we want to represent a model graphically this will be enough.
However, for comparing against higher dimensional alternatives it is not satisfactory.

For the triadic one-mode distance function with stable positions (Z1 =Z2 =Z3 =Z) the asso-
ciation model should be fitted with equality restrictions on the row, column or layer scores such
that μip =νip =κip, but also a restriction on the association parameters φ1p =φ2p =φ3p.

5.5. Application
To illustrate, model (15) will be applied to data obtained from Upton (1978), page 128, where a
sample of 1651 Swedish people were asked for their votes at three consecutive elections (Table 3).
There are four political parties, the Social Democrats SD, the Centre Party C, the People’s
Party P and the Conservatives CON. Table 3 gives the measurements of forces between the four
political parties. For example, there are low forces between the Social Democrats in 1964, the
Centre Party in 1968 and the People’s Party in 1970 (the force equals 6) and between the People’s
Party in 1964, the Centre Party in 1968 and the Social Democrats in 1970 (the force equals 1).


