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Summary.Newton’slawofgravitystatesthattheforcebetweentwoobjectsintheuniverse
isequaltotheproductofthemassesofthetwoobjectsdividedbythesquareofthedistance
betweenthetwoobjects.Inthefirstpartofthepaperitisshownthatamodelwitha‘law-of-gravity’
interpretationapplieswelltotheanalysisoflongitudinalcategoricaldatawherethenumberof
peoplechangingtheirbehaviourorchoicefromonecategorytoanotherisameasureofforce
andthegoalistoobtainestimatesofmassforthetwocategoriesandanestimateofthedis-
tancebetweenthem.Toprovideabetterdescriptionofthedatadynamicmassesanddynamic
positionsareintroduced.ItisshownthatthisgeneralizedlawofgravityisequivalenttoGood-
man’sRC(M)associationmodel.Inthesecondpartofthepaperthemodelisgeneralizedto
twokindsofthree-waydata.Thefirstcaseiswhentherearemultipletwo-waytablesandin
thesecondcasewehavechangeoverthreepointsoftime.Conditionalandpartialassociation
modelsarerelatedtothree-waydistancemodels,liketheINDSCALmodel,andtriadicdistance
modelsrespectively.

Keywords:Categoricaldata;Euclideandistance;Gravitymodel;Longitudinaldata;Square
tables;Triadicdistance

1.Introduction

Thispaperwillbeconcernedwithlongitudinalcategoricaldata,i.e.repeatedmeasurements
onanumberofobservationalunitswiththesameinstrument.Themaininterestinstudying
longitudinaldataiswhetherchangeoccurredand,ifso,whatthenatureofthechangeis.We
shallconfineourselvestothecaseofcategoricaldata.Ourquestionsconcernqualitativechange,
i.e.changesinattitude,opinion,behaviouroranyothercategoricalvariable.Thisistypically
differentfromcontinuousdatawhereitmightbepossibletodescribechangeintermsofbetter
orworse;forcategoricaldatadescriptionsareintermsof‘different’or‘thesame’.

Oncelongitudinalcategoricaldatahavebeencollectedtheycanberepresentedintransition
frequencytables,whicharecontingencytableswhereeachwaycorrespondstothecategoriesof
avariablemeasuredataspecifictimepoint(weadoptthewaymodeterminologyforthetables
ofCarrollandArabie(1980)).Thenumberoftimepointsdefinesthenumberofwaysofthe
transitionfrequencytable.Havingmeasuredagroupofpeopletwiceonacategoricalvariable,
asquaretransitionfrequencytablearises.Ifmeasurementsareobtainedatthreetimepointsthe
datacanbegatheredinathree-waycontingencytable,andsoforth.

AnexampleofsuchdataisobtainedfromUptonandSärlvik(1981)whodiscussedchanges
inpoliticalvotinginSweden.ThedataareshowninTable1.Therearefivepoliticalparties:
theCommunistsCOM;theSocialDemocratsSD;theCentrePartyC;thePeople’sPartyP;the
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two-waytables,e.g.transitiondatathatareobtainedindifferentcountries,ordifferentgroups
oratdifferenttimepoints.

4.1.Themodel
Inthissectionweshalldevelopmodelsformultipletwo-waytables.Eachofthesetablescanbe
modelledbythegravitymodelsoftheprevioussection,resultinginauniversewithobjectsand
massesforeachlayer(k=1,...,K)ofthetable.Themostgeneralmodelis

Fijk∝
m1k.i/m2k.j/

exp{d2
ij.Z1k;Z2k/}

,.9/

wheremtk.i/isthemassofobjectiattimepointtinlayerkandthevectorztk.i/givesthe
positionofobjectiattimepointtinlayerk,i.e.eachlayerisrepresentedbythegravitymodel
oftheprevioussection.

Restrictionscanbeimposedtorelatethedifferentuniverses.Forexample,themassesof
differentlayersortheco-ordinatesofdifferentlayerscanbeconstrainedtobeequalorequal
uptoascalingconstant.Themostnaturalchoiceistorestricttheco-ordinates(Ztk).Examples
ofrestrictionsare

Ztk=ZtWk,.10/

Ztk=ZWk,.11/

Ztk=Zt,.12/

Ztk=Z,.13/

whereWkisadiagonalmatrix,specifyingpositiveweightsthatstretchorshrinkthedimensions
ofeachlayer,andZisamatrixwithco-ordinatesofthepoints,whichcanbedependentontime
(Zt)ornot(Z).Whenwppk>1,dimensionpforlayerkisstretched,meaningthatforlayerkthe
objectsaremoredifferentiatedonthisdimension.Whenwppk<1thedimensionshrinks,i.e.for
layerktheobjectsarelessdifferentiatedondimensionp.Therestrictioninequation(11)defines
thewell-knownINDSCAL-typeofthree-waydistancemodel(CarrollandChang,1970),with
stablepositionsofthecategoriesforeachlayerofthetable.Thefirstrestriction,equation(10),
definesatwo-modeversionoftheINDSCALmodel,i.e.anINDSCALdistancemodelwith
dynamicpositions.Thethirdrestriction,equation(12),definestwo-modedistanceswhichare
equalacrossthelayersandthefourthrestriction,equation(13),definesone-modedistancesthat
areequalacrossthelayers.Anexampleofamodelwithstablepositionswithineachlayerthat
isstretchedorshrunkinthedifferentlayersandwithequalmassesoverthelayerscanbefound
indeRooij(2001).

4.2.Rewritingthemodel
Likethemodelfortwo-waytablesthismodelcanbewrittenasanassociationmodel.Inthiscase
wedealwiththeconditionalassociationmodelsasproposedbyClogg(1982)andBeckerand
Clogg(1989).Asinthetwo-waycase,thelinkbetweenthetwotypesofmodelsmakesavailable
softwareforfittingourgravitymodelsandhelpsinunderstandingrelationshipsbetweenour
gravitymodelsandothermodelsforcontingencytables.Theformulaefortransformingone
modelintotheotheraresimilartoexpressions(6)and(7).Forexample,withtherestrictionin
equation(10)wehave
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Table 1. Swedish voting data representing voting
changes from 1964 (rows) to 1970 (columns)†

com sd c p con
COM (22) 27 4 1 0
SD 16 (861) 57 30 8
C 4 26 (248) 14 7
P 8 20 61 (201) 11
CON 0 4 31 32 (140)

†From Upton and Särlvik (1981).

Conservatives CON. These are the anglicized names following Upton and Särlvik (1981). The
rows correspond to the political parties in 1964 (in capital letters); the columns to the political
parties in 1970 (lower-case letters).

The focus will be on change, i.e. on the off-diagonal entries. The values on the diagonal are
within parentheses; for these cells special parameters (which are often called loyalty parameters)
will be included in the models to be developed.

The question, once we have such change data, is not whether there is association but what the
pattern of association looks like. We shall propose a model for these data based on Newton’s
law of gravity, which states that the force between any two objects in the universe is propor-
tional to the masses of the two objects and inversely related to the squared distance between the
two objects (Newton’s law of gravity will be discussed in more detail in the next section). This
deterministic model will be applied to the analysis of change where the objects in the universe
are the categories of the variable. The force between two objects is measured by the number of
respondents making a transition from one category to another. This number is not accurately
measured, however, since a sample is obtained from a population. Therefore, the law of gravity
is used as a probabilistic model assuming a multinomial sampling scheme (which is the usual
sampling scheme for such data). The force will be modelled by the mass of the two categories
and a function of the distance between the two objects.

The remainder of this paper is organized as follows. The next section discusses Newton’s law
of gravity in more detail. Section 3 describes the analysis of change in terms of Newton’s law
of gravity and introduces dynamic elements in the law to adapt for different data settings. After
introducing the dynamic elements it will be shown that the model is a reparameterization of
the RC(M) association model (Goodman, 1979, 1991). The usual identification constraints for
this model, however, are not suited to the analysis of change. A new way of identifying the
solution will be presented and finally the model will be applied to the data in Table 1. In Section
4 the model will be generalized to the case of multiple two-way tables. The gravity models that
are developed are related to conditional association models (Clogg, 1982), but again the usual
identification constraints are not suited to the analysis of change. Section 5 treats gravitational
models for three time points. These models are related to partial association models (Clogg,
1982). Identification and an application to empirical data will be discussed. We shall conclude
with discussion and reflection about the results obtained and show some limitations of the work
presented.

2. Newton’s law of gravity

One of the major laws of the natural sciences is Newton’s law of gravity:

‘All matter attracts all other matter with a force proportional to the product of their masses and inversely
proportional to the square of the distance between them’.
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Fig. 2. Graphical representation of transitions between Swedish political parties: , COM, SD, C, P, CON,
mass and positions of the parties in 1964; , sd, com, c, con, p, mass and positions of the parties in 1970

1979; Becker, 1990; Haberman, 1995). By back-transforming using equations (7) and (6) we
can obtain estimates of our model (5). The program LEM (Vermunt, 1997) will be used to fit
the models; the transformation to a distance model and the way of identifying the solution are
performed in MATLAB (Mathworks, 2006). The model with stable masses but dynamic posi-
tions cannot be written as an association model and thus cannot be estimated with available
software for association models.

3.8. Application to Swedish politics data
The data in Table 1 were analysed by using the gravity models proposed. First some benchmark
models were fitted. The quasi-independence model, the symmetry model and the quasi-symme-
try model do not fit these data (X2-values respectively 103.13, 78.03 and 22.86; G2 101.12, 83.13
and 23.37, with 11, 10 and 6 degrees of freedom df). Since the quasi-symmetry model does not fit
the data we expect that the models with stable positions do not fit either, which is indeed the case.
With one dimension X2 =28:97, G2 =27:29 and df =7 and with two dimensions the fit barely
increased: X2 =22:88, G2 =23:40 and df =4. With dynamic positions a good fit was obtained in a
single dimension, X2 =4:96, G2 =5:92 and df =4. The solution is shown in Fig. 2. We see several
positional changes there: in 1964 the positions of the five parties are as expected on the left–right
dimension, and also as described by Upton and Särlvik (1981). Ordered from left to right the
Communists, the Social Democrats, the Centre Party, the People’s Party and the Conserva-
tives.

The positional changes from 1964 to 1970 can be summarized as follows: the Communists
and Social Democrats grouped together on the left wing whereas the Conservatives and People’s
Party grouped on the right wing. Especially the Social Democrats made a big change to the left.
The Centre Party moved from the centre to a more right-wing position. It seems that some
polarization happened that distinguishes the two left-wing parties from the three other parties.
Such a grouping was also found in Upton and Särlvik (1981). Although it may seem strange
that the Social Democrats are more leftist than the Communists this has also been observed at
several points in time by Lewin et al. (1972), page 226.

Concerning the masses it can be seen that the masses of the Communists, the People’s Party
and the Social Democrats stay the same, the Centre Party is the winner and the Conservative
Party is the political party that lost mass.

4. Multiple two-way tables and multiple universes

Up to this point discussion has been confined to two-way tables. In the remainder of this paper
we shall generalize the models to three-way tables. This section treats the case of multiple
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Fig.1.Newton’slawofgravity:themassesofobjects1and2arerepresentedbytheareaofthecircles
andd12isthedistancebetweenthecentresofthetwoobjects

Thislawcanbewritteninaformulaas

Fij∝
m.i/m.j/

d2
ij

,.1/

whereFijdenotestheforcebetweenobjectsiandj,m.i/andm.j/arethemassesoftheobjects
iandj,andd2

ijisthesquareddistancebetweentheobjects.Amoregeneralformulationofthe
lawis

Fij∝
m.i/m.j/

g.dij/
,.2/

whereg.·/isg.x/=x2,butmayalsobesomeotherfunction.Agraphicalrepresentationisshown
inFig.1,wherethemassesarerepresentedbytheareaofacircle.Newtonexplainedawiderange
ofpreviouslyunrelatedphenomenabyusingthislaw:theeccentricorbitsofcomets,thetides
andtheirvariations,theprecessionoftheEarth’saxisandmotionoftheMoonasperturbedby
thegravityoftheSun.ThisworkmadeNewtonaninternationalleaderinscientificresearch.

Inthenextsectionweshallshowthatthelawofgravityapplieswelltotheanalysisofsocial
change.Therefore,firstsomeotherdefinitionsofthefunctiong.·/areprovidedanddynamic
elementsareintroduced.Themostgeneralmodelthatresultsisareparameterizationofawell-
knownmodelinstatisticsandsocialresearch,theRC(M)associationmodel(Goodman,1979,
1991).Itshouldbenoted,however,thatbythetimethatwearriveattheRC(M)association
modelmanypropertiesofrealforcesastheyareinthenaturalscienceshavebeenlost.Whatis
maintainedistheinterpretationintermsofmassanddistance,andtheanalogywithNewton’s
lawofgravityismeantmorelikeametaphorthanreality.

3.Theanalysisofchange

WherethetaskforNewtonwastoassesstheforceofthetwoobjectsoneachothergiven
theirmassandtheirdistance,wedealwiththereverseproblem.Weassumethateachobject
attractspeoplefromotherobjectswithsomeforce.Theresultantoftheseforcesisflowsof
peoplebetweenobjects.Theseflowscanbeconsideredmeasurementsoftheattractionalforces
betweenobjects,andthus(usingthelawofgravity)arethenumberofpeoplegoingfromone
objecttoanotherproportionaltothemassofthefirstobjecttimesthemassofthesecondobject
andinverselyproportionaltoafunctionofthedistancebetweenthetwoobjects.

InTable1itcanbeseenthatthereisalargenumberofpeople(57)whovotedfortheSocial
Democratsin1964andfortheCentrePartyin1970,sothereisalargeforcebetweenthese
twocategories.Similarly,theforcebetweentheCommunistsandtheConservativesissmall
(thefrequencyequals0).Moreover,theforceofonecategoryonanotherisnotequaltothe
reverse;forexample,theforceCommunists–SocialDemocratsequals27andtheforceSocial
Democrats–Communistsequals16.
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Fij∝
m1.i/m2.j/exp.δijλi/

exp{d2
ij.Z1;Z2/}

,.8/

whereδijequals1ifi=jand0otherwise.Theλiareobject-specificloyaltyparameters,of
whichthereareI.Theeffectoftheseparametersisthattheobservationsonthediagonaldonot
influencethemassesandthedistances,i.e.thegravitymodelpertainstochange.Anothereffect
oftheseparametersisthattheexpectedfrequenciesequaltheobservedfrequenciesforthese
cells.

3.5.Distances,distancesandinnerproducts
TheRC(M)associationmodelisoftenthoughtofasamodelforordinaldata(although,strictly,
nowhereisanordinalrestrictionimposedonthescalevalues)andtheparametersμipandνjp

areofteninterpretedintermsofdistances.Thisraisesthequestionwhatisnewaboutthedis-
tanceinterpretationinthegravitymodel.Toanswerthisquestionweshoulddistinguishbetween
within-setdistancesandbetween-setdistances.IntheRC(M)associationmodeldistanceswithin
thesetofrowpointscanbeinterpretedsuchthat,whenμiandμi′,withμi=.μi1,...,μiP/T,are
(approximately)equal,categoriesiandi′havethesamepatternofassociationtothecolumn
categories.Tointerprettherelationshipbetweentherowandcolumnsetsofcategoriesinthe
RC(M)associationmodelaninnerproductrulemustbeused,wheretheassociationequals
theproductofthelengthofthetwovectorsμiandνjmultipliedbythecosineoftheangle
betweenthesetwovectors.TheparameterizationintermsofNewton’slawofgravityprovides
abetween-setdistanceinterpretation,i.e.aninterpretationofthedistancebetweenz1.i/and
z2.j/.

3.6.Identificationconstraints
TheRC(M)associationmodelisnotidentified;itneedslocation,scalingandcross-dimensional
constraintsontherowandcolumnscores.Usuallythescoresarecentred,thesumofsquaresis
setequalto1andthedimensionsaremadeorthogonal.Fortheanalysisofchange,however,
thesestandardidentificationconstraintspreventsubstantialconclusions.

Letusdenotethecentredrowscoresbyz̃1.i/.Itispossibletotransformthesecentredrow
scoreslinearlybyz1.i/=Tz̃1.i/+afordiagonalTandavectora,andtoadaptaccordingly
z2.j/=T−1z̃2.j/−aandtheestimatesofthemasseswithoutchangingtheexpectedfrequencies.
Thevectorachangesthemeanpositionoftherowpointsoneachdimensionwhereasthediag-
onalmatrixTchangesthespreadoftherowpointsoneachdimension.Thesetransformations,
however,donotchangetheorderorrelativespacingsbetweenrowpoints;theyareadimen-
sionwiselineartransformationoftherowpoints.Thecentredcolumnpointsaretransformedby
usingtheinverseofthislineartransformation.Toobtainoptimallocation(a)andscalings(T)
thecorrelationbetweensquareddistances(d2

ij.Z1;Z2/)andF̂ij=α̂iβ̂jisminimized.Thiscan
bedonebyusingtheproceduresthataredescribedindeRooij(2007).

Itisimportantthatthetotalmassisequaloverthetimepoints,i.e.thatthetotalmassatthe
firsttimepointisequaltothetotalmassatthesecondtimepoint.Thereforetheidentification
constraintsonthemasseswerechosensuchthatthisrestrictionistrue.Themasswillberep-
resentedbytheareaofthecircle.Todrawthecirclesweshallthereforeusearadiusequalto
r.i/=√{m.i/=π}.

3.7.Estimation
SeveralresearchershavediscussedestimationoftheRC(M)associationmodel(Goodman,
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3.1. A Gaussian link
In Newton’s law of gravity the distance is defined by a three-dimensional Euclidean distance, i.e.
our universe is three dimensional. For the analysis of change the dimensionality is not known
in advance but will be denoted by P. For the data in Table 1, for example, it is likely that the
parties are differentiated on the standard ‘left–right’ dimension that is often found in political
systems. Furthermore, there might be another dimension that differentiates the five parties. In
Section 5, for example, we find a ‘rural–urban’ dimension on which the political parties differ.
Often the dimensions are interpreted after the solution has been found, on the basis of practical
knowledge of the data at hand. The co-ordinates of object i in P-dimensional space are given
by the vector z.i/ = .zi1, . . . , ziP /T. The z.i/s will, in turn, be collected in the I × P matrix
Z= .z.1/, z.2/, . . . , z.I//T. The squared Euclidean distance between objects i and j is given by

d2
ij.Z/=

P∑
p=1

.zip − zjp/2: .3/

Other distance measures might be used as well, e.g. any distance from the Minkowski family (see
Borg and Groenen (2005), chapter 17). Where in the law of gravity g.x/ = x2 we shall employ
g.x/ = exp.x2/, the Gaussian transformation or Gaussian link function (de Rooij and Heiser,
2005; Nosofsky, 1985), which is a monotone function. Again, like for the distance formulation,
other transformation functions might be used, but in Section 3.4 it will be shown that this func-
tion relates the law of gravity to a well-known model for the statistical analysis of contingency
tables.

3.2. Dynamic masses
As discussed above the measured forces are not symmetric, i.e. the force from Communist on
Social Democrats is measured to be 27, whereas the reverse force is 16. The law of gravity
assumes symmetric forces and the asymmetry is a form of ‘error’.

To deal with such asymmetries the model will be generalized in two ways. The first generaliza-
tion is to make the masses of the objects dependent on time. So, we deal with dynamic masses. It
is quite natural that masses change in the social sciences, i.e. an object might be popular at one
time point and unpopular at another. For example, in brand switching data some brands come
into fashion at one moment and go out of fashion another. When an object is popular it has
a large mass; when it is unpopular it has a small mass. For our model this means that objects
have a mass at each time point, and that mass will be denoted by mt.i/, the mass of object i at
time point t. In a graphical representation (like Fig. 1), each object would have two circles.

3.3. Dynamic positions
A second generalization is to make the positions time dependent. So, dynamic positions are
introduced into the model. An interpretation of a dynamic position is that the content of an
object has changed. For example, a political party might change its election programme after
it has lost dramatically in the last election or when a loss is in prospect, and thereby change its
relative position towards other parties. Each object has a position for each time point which is
denoted by zt.i/ = .zit1, . . . , zitP /T and the positions of all objects at time point t are gathered
in a matrix Zt = .zt.1/, zt.2/, . . . , zt.I//

T. The one-mode Euclidean distance (3) is replaced by a
two-mode Euclidean distance:

d2
ij.Z1; Z2/=

P∑
p=1

.zi1p − zj2p/2: .4/
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In the graphical representation each object is shown twice: once for each time point.

3.4. Rewriting the model
The model with dynamic masses and dynamic positions is

Fij ∝ m1.i/m2.j/

exp{d2
ij .Z1; Z2/} : .5/

This gravity model can be rewritten in a form that is well known in statistics and is often
applied in sociological studies; the RC(M) association model (Goodman, 1979, 1991). By back-
transforming the parameters of this model, estimates of the masses and co-ordinates of our grav-
ity model are obtained. Furthermore, relationships of this well-known model to other models for
contingency tables are well established, and are then also valid for our gravity model. However,
the usual graphical displays for the RC(M) association model are susceptible to misinterpreta-
tion (for examples see de Rooij and Heiser (2005)), whereas our interpretation is more intuitive.
The transformation from gravity to association model is as follows (de Rooij and Heiser, 2005):

Fij ∝ m1.i/m2.j/

exp
{

P∑
p=1

.z2
i1p + z2

j2p −2zi1pzj2p/

}
∝ m1.i/m2.j/

exp
(

P∑
p=1

z2
i1p

)
exp

(
P∑

p=1
z2

j2p

)
exp

(
P∑

p=1
−2zi1pzj2p

) : .6/

Defining α.i/=m1.i/= exp.ΣP
p=1z2

i1p/ and β.j/=m2.j/= exp.ΣP
p=1z2

j2p/, we obtain

Fij ∝ α.i/β.j/

exp
(

P∑
p=1

−2zi1pzj2p

)
∝α.i/β.j/ exp

(
P∑

p=1
2zi1pzj2p

)
∝α.i/β.j/ exp

(
P∑

p=1
φpμipνjp

)
, .7/

with zi1p = φ
1=2
p μip=

√
2 and zj2p = φ

1=2
p νjp=

√
2. The last line in expression (7) is Goodman’s

(1979, 1991) RC(M) association model. In summary, we started with (an adaptation of) New-
ton’s law of gravity, introduced dynamic elements and ended up with this well-known model.
The RC(M) association model is a reduced rank model for the association which equals the
saturated model when the dimensionality equals I − 1 and which equals the (quasi-) indepen-
dence model when the dimensionality is 0. The model with stable positions is the homogeneous
RC(M) association model and imposes a symmetry restriction on the association, and thus is a
special case of the quasi-symmetry model (Caussinus, 1965). The model with stable masses and
positions is a special case of the symmetry model.

Since our focus is on the off-diagonal entries we need parameters for the diagonal entries of
the table. These are loyalty parameters for each class, i.e. the model becomes
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Fijk∝
m1k.i/m2k.j/

exp{d2
ij.Z1;Z2;Wk/}

∝
m1k.i/m2k.j/

exp{∑pw2
kp.zi1p−zj2p/2}

∝
m1k.i/m2k.j/

exp(∑pw2
kpz2

i1p+w2
kpz2

j2p−2w2
kpzi1pzj2p)

∝
m1k.i/

exp(∑pw2
kpz2

i1p)
m2k.j/

exp(∑pw2
kpz2

j2p)exp(∑p2w2
kpzi1pzj2p)

∝αikβjkexp(∑pφkpμipνjp),.14/

wherethedifferencebetweenzi1pandμipisascalingfactor√2andφkp=w2
kp.Thelastlinein

expression(14)istheconditionalassociationmodel(Clogg,1982;BeckerandClogg,1989).
Model(9)representsareducedrankassociationmodelforeachtwo-waytable.Byusing

restrictions(10)–(13)theco-ordinatesofthedifferentlayersarefunctionsofeachother.With
restrictions(11)and(13)symmetryrestrictionsontheassociationareimposed,whereasrestric-
tions(12)and(13)resultinmodelswithoutthree-wayassociation.

4.3.Identification
Theconditionalassociationmodelneedslocationandscalingconstraintsbutnocross-dimen-
sionalconstraints(Wong(2001),page207).Similartothesituationthatwasdiscussedinthe
previoussection,newlocations(a)andscalings(T)arefoundbyminimizingthecorrelation
betweentheelementseij,definedas

eij=∑kF̂ijk

α̂ikβ̂jk

,

andthesquaredunweightedtwo-modedistances.Theone-modedistancemodels((11)and(13))
areidentified.

ThedegreesoffreedomfortheconditionalassociationmodelswerediscussedinWong(2001),
pages205–207.Forourmodelsthesenumbersshouldbeadaptedfortheloyaltyparametersfor
thenon-movers,i.e.thecellfrequenciesrepresentedwithinparenthesesinTable2.Themodel
thatisgiveninexpression(9)ismultipliedbythetermexp.δij|kλik/whereδij|kequals1ifi=j

and0otherwise.ThereareIKoftheseparameters.

4.4.Estimation
ConditionalassociationmodelscanbeestimatedwithLEM(Vermunt,1997).Fromtheexpected
frequenciesweobtainanidentifiedsolutionwithaMATLABprocedure.

Acautionarynoteisinorderhere:whenthemodelwithconstraint(10)or(11)isestimated
byusingtheconditionalassociationmodeltoobtainestimates,althoughnotregularlyencoun-
tered,negativeassociationparametersmayoccurforsomelayer.Inthatcasethereisnota
distancerepresentationoftheconditionalassociationmodel.Atraditional(i.e.fortheassoci-
ationmodel)graphicaldisplayoftheassociationmustalsoreflectthedimensionfortherow
orcolumnpointsforthespecificlayer.Ifsuchanegativeassociationcoefficientoccursitis
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FortheinterpretationasamodelofchangeconsidertheoddsofchoosingtheSocialDem-
ocratsversustheCentrePartyatthethirdtimepointgiventhePeople’sPartyatthefirstand
Conservativesatthesecondtimepoint.Theoddsare

πP,CON,SD

πP,CON,C
=

m1.P/m2.CON/m3.SD/exp.−d2
P,CON,SD/

m1.P/m2.CON/m3.C/exp.−d2
P,CON,C/

=
m3.SD/

m3.C/

exp.−d2
CON,SD/

exp.−d2
CON,C/

exp.−d2
P,SD/

exp.−d2
P,C/

:

So,theknowledgethatatthefirsttimepointthechoicewasforthePeople’sPartychangedthe
oddsbyafactorexp.−d2

P,SD/=exp.−d2
P,C/=0:50.

AsanotherexampleconsidertheoddsofthePeople’sPartyversustheConservativesgiven
twicetheSocialDemocrats:

πSD,SD,P

πSD,SD,CON
=

m1.SD/m2.SD/m3.P/exp.−d2
SD,SD,P/

m1.SD/m2.SD/m3.CON/exp.−d2
SD,SD,CON/

=
m3.P/

m3.CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

=
0:14
0:05

exp.−1:53/

exp.−2:06/

exp.−1:53/

exp.−2:06/

=
0:14
0:05

0:22
0:13

0:22
0:13

=2:8×1:69×1:69

=7:98:

So,aftertwicechoosingtheSocialDemocratstheoddsarelargelyinfavourofthePeople’s
PartyinsteadoftheConservatives,whichcanbejudgedfromthelargermassofthePeople’s
PartyandthesmallerdistancefromtheSocialDemocratstothePeople’sPartycomparedwith
thedistanceSocialDemocrats–Conservatives.

6.Swedishpoliticsrevisited

ThetwoexamplesthatwerediscusseddealtwithvotesfromSwedenintheperiod1964–1970
(seeSections3.8and5.5).ThefirstexampleincludedtheCommunistsforwhichwehavenodata
inthesecondexample.Theconclusionfromthefirstexample(1964–1970)wasthattherehave
beenmajorchangesinthepositions,whereastheconclusionfromthesecondexample(1964–
1968–1970)isthatthepositionsareunchanged.Thesesolutionscannotreallybecompared,
sincethefirstshowsmarginalassociationwhereasthesecondshowsconditionalassociation.It
iswellknownthatthesetwodifferinmanycases(seeAgresti(2002),chapter2).

Tocomparethepositionsfurtherweanalysedfourtables:eachofthetwo-waymarginaltables
ofthe1964–1968–1970data(Table3)andthe1964–1970data(Table1)butwithouttheCom-
munists.Forthese4×4tables,theone-dimensionalmodelwithdynamicpositionshas0degrees
offreedom,i.e.itisasaturatedmodel.Tomakecomparisonswechangedfromobject-specific
loyaltyparameterstoasingleoverallloyaltyparameter(i.e.λ1=λ2=...=λI),theeffectof
whichisthatthemassesanddistancesnowalsocontributetothefitofthediagonalelements
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Table 2. Mobility data from three countries:USA, UK and Japan†

Country Father Son

un ln um lm fa
US UN (1276) 364 274 272 17

LN 1055 (597) 394 443 31
UM 1043 587 (1045) 951 47
LM 1159 791 1323 (2046) 52
FA 666 496 1031 1632 (646)

UK UN (474) 129 87 124 11
LN 300 (218) 171 220 8
UM 438 254 (669) 703 16
LM 601 388 932 (1789) 37
FA 76 56 125 295 (191)

Japan UN (127) 101 24 30 12
LN 86 (207) 64 61 13
UM 43 73 (122) 60 13
LM 35 51 62 (66) 11
FA 109 206 184 253 (325)

†From Yamaguchi (1987): UN, upper non-manual; LN, lower non-
manual; UM, upper manual; LM, lower manual; FA, farm.

reasonable to assume that the model does not provide a good description of the association for
that specific layer.

4.5. Application
To illustrate, the gravity model will be applied to data from Yamaguchi (1987) (see also Caus-
sinus and Thelot (1976)), where occupational mobility is given for three countries: the USA,
the UK and Japan. The data are reproduced in Table 2. Each occupational mobility table has
five occupational categories: upper non-manual UN; lower non-manual LN; upper manual UM;
lower manual LM; farmer FA. Again the focus is on change and for all cells within parentheses
loyalty parameters are included in the models to be discussed.

Two benchmark models for these data are the conditional quasi-independence model and the
no-three-way interaction model. The conditional quasi-independence model of father and son
given country has X2 =1409:76 and G2 =1336:20 with df=33 and the no-three-way association
model has X2 =36:24 and G2 =36:21 with df=22. The latter model with symmetry restrictions
on the father–son association term has X2 =125:24 and G2 =106:67 with df=28 (the degrees of
freedom in the latter two models are computed by adding the number of boundary parameters
to the usual degrees of freedom). The last model shows that the assumption of a symmetric
association pattern is not tenable, i.e. a two-mode distance model will be needed.

The one-dimensional model with dynamic masses and dynamic positions constrained to be
equal for the three layers (the restriction which is defined by equation (12)) fits the data mar-
ginally (X2 = 37:75, G2 = 37:72 and df = 26), which is reasonable considering the large sample
size. The solution is shown in Fig. 3.

The major positional change is that of the farmer category, which is for the fathers at the right
but for the sons in the middle, closer to the non-manual categories. When looking at the masses
it can be seen that the USA and the UK have a similar pattern, whereas the pattern in Japan is
typically different. In the USA and the UK the non-manual classes gained mass, whereas the
lower manual and farmer classes lost mass. In the USA the upper manual class gained mass

Analysis of Change, Newton’s Law and Association Models 151

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

sd 

c 

p  con

Fig. 4. Graphical representation of transitions between Swedish political parties from 1964 to 1968 to 1970
(the horizontal dimension can be interpreted as the traditional left–right dimension, whereas the vertical
dimension can be interpreted as a rural–urban dimension): �, mass at 1964; , mass at 1968; , mass at
1970

is between the Social Democrats, the Centre Party and the Conservatives (d2
ijk =4:79), whereas

the smallest is between the Centre Party, the People’s Party and the Conservatives (d2
ijk =1:84).

The other two triadic distances are d2
ijk = 4:16 for the combination Social Democrats, Centre

Party and People’s Party and d2
ijk =3:63 for the combination Social Democrats, People’s Party

and Conservatives. Also triples with a recurring party have a triadic distance, which is in the
triadic one-mode distance the square root of twice the squared dyadic distance. Since these are
often smaller than the triadic distances between three different parties, the pattern is such that
more people transit between two than between three parties.

Concerning the masses we see that the Social Democrats first stay stable but then lose mass,
the Centre Party gains mass twice, the People’s Party first loses and then regains mass, and
finally the Conservatives lose mass twice.

The horizontal dimension is the traditional left–right dimension, where again the Centre
Party, the People’s Party and the Conservatives group on the right-hand side. The vertical
dimension differentiates the Centre Party from the other parties and can be understood as a
rural–urban dimension since the Centre Party used to be the Agrarian Party, attracting many
farmers and people from the small villages (Lewin et al. (1972), page 221).
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Fig.3.GraphicalrepresentationofoccupationalmobilitydatafromYamaguchi(1987)(,UN,LN,UM,LM,
FA,massandpositionsofthecategoriesforthefathers;,un,ln,fa,um,lm,massandpositionsofthe
categoriesforthesons):(a)USA;(b)UK;(c)Japan

whereasintheUKthiscategorylostmass.InJapanthefarmerslostmasswhereasallother
categoriesgainedmass.

5.Generalizationstochangeoverthreetimepoints

5.1.Themodel
Abovewetreatedmodelsfortwotimepoints.Often,however,dataaregatheredatmoretime
points.Forthreetimepointsagravitymodelcanbebuiltbyusingtriadicdistancemodels
(deRooijandGower,2003;GoweranddeRooij,2003;deRooijandHeiser,2000,Heiserand
Benanni,1997;Daws,1996;JolyandLeCalvé,1995;Coxetal.,1991;PanandHarris,1991),
modelsthatdefineadistancebetweenthreepointssimultaneously.Anextensionofmodel(5)is

Fijk∝
m1.i/m2.j/m3.k/

exp{d2
ijk.Z1;Z2;Z3/}

:.15/
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Table3.Swedishvotingdatarepresentingvoting
changesfrom1964to1968to1970

196419681970party
partyparty

SDCPCON
SDSD(812)27165

C52060
P2340
CON3342

CSD21610
C3(216)62
P0370
CON0904

PSD15280
C13780
P117(157)4
CON02126

CONSD2001
C01314
P03171
CON01211(126)

Asinthetwo-waytablestheforcefromatobwasnotequaltotheforcefrombtoa;inthe
three-waytabletheforceabcisnotequaltotheforcesacb,bac,bca,cabandcba.Thefocus
isonthemovers,meaningthatsubjectswhomadethesamechoiceatallthreetimepointsare
excludedfromtheanalysiswiththegravitymodel,byincludingloyaltyparametersforthecells
withinparentheses.

Somebenchmarkmodelsaretheno-three-wayassociationmodel,whichhasX2=27:13and
G2=29:00withdf=23withaBayesianinformationcriterion(BIC)statisticof−141.40.With
symmetryrestrictionsontheassociationtermsweobtainX2=47:25andG2=49:49with
df=32withaBICstatisticof−187.60.Thelattermodeljustdoesnotfit:p=0:04byusingthe
X2-statistic.Anotherbenchmarkmodelisthefirst-orderMarkovmodel;ithasX2=427:04and
G2=207:33withdf=36.ItsBICstatisticequals−59.39.

Applicationofthegravitymodelswithstablepositions(triadicone-modedistance)gives
withonedimensionX2=166:97andG2=180:06withdf=47andX2=138:16andG2=138:07
withdf=45withtwodimensions.UsingdynamicpositionsX2=116:00andG2=131:25with
df=41intheone-dimensionalsolutionandX2=74:36andG2=80:86withdf=33inthe
two-dimensionalsolution.

LookingatBICstatisticsweobtainthefollowing.Forthemodelwithstablepositionsin
onedimensiontheBICstatisticequals−168.17,whereasintwodimensionsitis−195.34.With
dynamicpositionsinonedimensiontheBICstatisticis−172.52,andintwodimensions
itis−163.64.

Fig.4showsthemodelwiththelowestBICstatistic,thetwo-dimensionalmodelwithdynamic
massesbutstablepositions.Thisisamodelwithathree-waysymmetricassociationpattern,
i.e.allasymmetryinthedataiscapturedbythemasses.WeseethatthePeople’sPartyand
theConservativesarecloseinspace(d2=0:04),whereastheSocialDemocratsarefarfrom
allotherparties(d2=1:78,d2=1:53andd2=2:06totheCentreParty,People’sPartyand
Conservativesrespectively).TheCentrePartyisclosertothePeople’sParty(d2=0:85)andthe
Conservatives(d2=0:96)thantotheSocialDemocrats(d2=1:78).Thelargesttriadicdistance
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Different forms of d2
ijk.Z1; Z2; Z3/ can be considered. de Rooij and Gower (2003) provided an

extensive description of possibilities plus the geometry of the options. A natural choice in the
current framework is to consider the generalized Euclidean model, in which case d2

ijk is defined
as

d2
ijk.Z1; Z2; Z3/=d2

ij.Z1; Z2/+d2
ik.Z1; Z3/+d2

jk.Z2; Z3/, .16/

where each dyadic distance is defined as in equation (4). The interpretation of a triadic distance
is facilitated when the isocontours are known, which are the lines with constant triadic distance
with two fixed points. The isocontours for the generalized Euclidean model are circular around
the centre of the two fixed points (de Rooij and Gower (2003), Fig. 3) just like the isocontours
for a regular Euclidean distance. The distance that is defined in equation (16) is a triadic three-
mode distance, where categories have dynamic positions as before in the two-mode distance.
The positions can be constrained to be stable; then the triadic one-mode distance is obtained,
in which case Z1 =Z2 =Z3 =Z.

5.2. Rewriting the model
Model (15) can be rewritten as a partial association model (Clogg, 1982) as follows:

Fijk ∝ m1.i/ m2.j/ m3.k/

exp{d2
ijk.Z1; Z2; Z3/}

∝ m1.i/m2.j/m3.k/

exp{d2
ij.Z1; Z2/+d2

ik.Z1; Z3/+d2
jk.Z2; Z3/}

∝ m1.i/m2.j/m3.k/

exp
(∑

p
z2

i1p + z2
j2p −2zi1pzj2p + z2

i1p + z2
k3p −2zi1pzk3p + z2

j2p + z2
k3p −2zj2pzk3p

)
∝ m1.i/m2.j/m3.k/

exp
(∑

p
2z2

i1p +2z2
j2p +2z2

k3p −2zi1pzj2p −2zi1pzk3p −2zj2pzk3p

) : .17/

Defining

α.i/=m1.i/= exp
( P∑

p=1
2z2

i1p

)
,

β.j/=m2.j/= exp
( P∑

p=1
2z2

j2p

)
and

γ.k/=m3.k/= exp
( P∑

p=1
2z2

k3p

)
we obtain

Fijk ∝α.i/β.j/γ.k/ exp
(∑

p
2zi1pzj2p +2zi1pzk3p +2zj2pzk3p

)
: .18/

The partial association model with restricted row, column or layer terms such that the row
scores are equal in the association with the columns and with the layers, and similarly for the
column scores and layer scores, is
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Fijk ∝α.i/β.j/γ.k/ exp
(∑

p
φ1pμipνjp +φ2pμipκkp +φ3pνjpκkp

)
: .19/

Model (18) can be obtained from this by defining

zi1p = apμip√
2

,

zj2p = bpνjp√
2

,

zk3p = cpκkp√
2

where ap =√
.φ1pφ2p=φ3p/, bp =φ1p=ap and cp =φ2p=ap.

Again, the link between the gravity and association model makes software available for fitting
the gravity model and provides insight into the relationships between our gravity model and
other models for contingency tables.

5.3. Identification
For the partial association models location constraints are necessary for each variable, whereas
scaling and cross-dimensional constraints are necessary for only one of the three variables
(Anderson and Vermunt (2000), page 95, and Wong (2001), page 204). In the triadic three-mode
model we can find new locations for the variable at the first time point a, for the second time point
b and for the third time point c =−.a +b/ by minimizing the correlation between F̂ ijk=α̂iβ̂j γ̂k

and the squared triadic distance d2
ijk.Z1; Z2; Z3/. The triadic one-mode model, i.e. the model

with stable positions, is identified.
As before we focus on change by including loyalty parameters in the model for the people who

made the same choice on all three occasions. In other words, the model defined in expression
(15) is multiplied by the term exp.δijkλi/, where δijk equals 1 if i= j = k, and 0 otherwise. The
λi are loyalty parameters, of which there are I.

5.4. Estimation
In LEM it is not possible to estimate the partial association models in more than two dimen-
sions. In most situations in which we want to represent a model graphically this will be enough.
However, for comparing against higher dimensional alternatives it is not satisfactory.

For the triadic one-mode distance function with stable positions (Z1 =Z2 =Z3 =Z) the asso-
ciation model should be fitted with equality restrictions on the row, column or layer scores such
that μip =νip =κip, but also a restriction on the association parameters φ1p =φ2p =φ3p.

5.5. Application
To illustrate, model (15) will be applied to data obtained from Upton (1978), page 128, where a
sample of 1651 Swedish people were asked for their votes at three consecutive elections (Table 3).
There are four political parties, the Social Democrats SD, the Centre Party C, the People’s
Party P and the Conservatives CON. Table 3 gives the measurements of forces between the four
political parties. For example, there are low forces between the Social Democrats in 1964, the
Centre Party in 1968 and the People’s Party in 1970 (the force equals 6) and between the People’s
Party in 1964, the Centre Party in 1968 and the Social Democrats in 1970 (the force equals 1).
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inthedatamatrix.Moreover,thesediagonalelementsarenotnecessarilyfittedperfectlyasis
thecasewithobject-specificloyaltyparameters.Withthesesettingsthemodelwithdynamic
positionshas3degreesoffreedom,whereasthemodelwithstablepositionhas5.

Foralldatasets,exceptforthe1968–1970data,dynamicpositionsareneeded.Forthe1968–
1970datathemodelwithstablepositionsprovidesanadequatefit.Theresultsareshownin
Fig.5.Figs5(a)–5(c)pertaintothemarginaltablesthatwereobtainedfromTable3,whereas
Fig.5(d)pertainstothedatafromTable1butwithouttheCommunists.FromFig.5itcanbe
concludedthatthepositionsofthepartiesin1964and1970areinallcasesroughlythesame.
Again,asinFig.2,theCentreParty,thePeople’sPartyandtheConservativesseemtocluster
togetherovertime,whichismostlyduetotheperiod1964–1968,sincethiseffectisvisiblein
boththeanalysisofthe1964–1968andthe1964–1970data.Concerningthe1968positionsin
theanalysisof1964–1968datathereisareversalofthePeople’sPartyandtheConservatives
attheright-handsideofthescale,whichcannotbefoundbackinthe1968–1970data.Note
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sd64 c64p64con64

sd68c68p68 con68
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Fig.5.Comparisonofresultsfromfourtwo-waytables(,massesfor1964;,massesfor1968;,masses
for1970):(a)1964–1968marginaltable(obtainedfromthethree-waytable);(b)1968–1970marginaltable
(obtainedfromthethree-waytable);(c)1964–1970marginaltable(obtainedfromthethree-waytable);
(d)1964–1970resultforTable1withouttheCommunists
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again that this reversal is not due to the new identification constraints. The same reversal in 1968
was found by Lewin et al. (1972), page 220, and can possibly be explained by ‘the conservative
party in the sixties is our best example of a party in the throes of a crisis of identity’ (Lewin
et al. (1972), page 285), which is also apparent by their change of name from (literal translation)
‘The Right Party’ to ‘The Moderates’ (see Upton and Särlvik (1981)). When looking at the
1968–1970 data, however, this reversal of the 1968 positions is not preserved. Finally, note that
the analyses of the two data sets pertaining to changes from 1964 to 1970 give (almost) identical
results.

7. Discussion

The analysis of change was discussed in terms of Newton’s law of gravity. It was shown that a
well-known and often-applied model for the analysis of contingency tables, the RC(M) associ-
ation model, can be interpreted in terms of mass and distance, and thus has an interpretation
that is similar to the law of gravity. Both masses and positions can be stable as well as dynamic.
These dynamic elements were discussed extensively; dynamic masses relate to popularity of
objects which might change whereas dynamic positions relate to content changes of objects
(in the case of stable masses no change in content took place). The RC(M) association model
needs location and scaling constraints for identification. The usual constraints, however, are
troublesome in the analysis of change, and therefore a new way of identifying the solution was
discussed. This new way of identifying the solution makes it possible to interpret the solution
in terms of polarization, as we did in the application. However, if everything (i.e. all voters and
all parties) makes the same shift in one direction, our method will not find this shift in location
since all relative positions remain the same. An example of such a situation, as a referee pointed
out, is that as a consequence of world events (e.g. global warming) the nation becomes more
left or right wing (i.e. ‘green’). All parties will feel this shift and will adapt their stances as a
consequence. This common shift will not be noted by our gravity model. If, however, some
parties shift more than others then we will see that the relative positions change.

The new interpretation in terms of mass and distance of the RC(M) association model is
simple since both mass and distance are fairly well-understood concepts, at least better than
main effects and inner products (projection). In the examples that were shown in Section 3 (and 4)
a one-dimensional solution was obtained in which the interpretation of the graphical display
in terms of distances is much easier than the product of lengths of vectors (as in the inner prod-
uct parameterization). So, a new interpretation to a well-known model was provided, which
might be of great value, since the new interpretation has roots in the natural sciences and is well
understood by many people.

The gravity models that were proposed can be considered a generalization of the loyalty–
distance models that were proposed by Upton and Särlvik (1981). Compared with their model
our model is not dependent on an a priori ordering of the objects; our model can be used for
multidimensional solutions; and our model allows for changing positions of the objects. It can
be assumed that the solutions that are obtained with our unidimensional model with stable
positions and the loyalty–distance model of Upton and Särlvik are approximately the same.

After the case of square contingency tables we looked at the case where there are multiple
tables. Bridges between conditional association models and weighted Euclidean distances
(the INDSCAL model) were shown, but also other solutions (further or less restricted) were
discussed for such data. As for the square table case, we developed a new interpretation in
terms of mass and distance. As for the standard RC(M) association model the identification
constraints had to be adapted; we developed a manner to do so.
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Thegeneralizationtotablesforthreetimepointsneededafurtherexpansionofthelawof
gravity.Distancesbetweenthreepoints,triadicdistances,werediscussedandtheirrelationship
topartialassociationmodelswasshown.Againthetriadicdistanceiseasiertounderstandthan
thesumofthreeinnerproducts,asmodelledinthepartialassociationmodels.Althoughthis
representationismovingawayfromNewton’slawofgravity,thebasicingredientsarestillmass
anddistance.Themodelsthatwerediscussedcantheoreticallybegeneralizedtomoretime
pointsbyusingtetradic(orpolyadic)distances,whichcanbedefinedassumsofall(squared)
dyadicdistances(asinequation(16)).However,therelationshipbetweenpartialassociation
modelsandtriadicdistancemodelsasshowninequations(18)and(19)doesnotgeneralizeto
moretimepoints(variables).Inthatcasethegravitymodelsbecomemorerestrictedthanthe
associationmodels.

Thetriadicdistancemodelsaregoodinshowingandrepresentingchange.Theylackaformal
changemechanism,however,asinforexample(latent)Markovmodels.However,thetriadic
gravitymodelscanbeconceivedassecond-orderMarkovmodelswithrestrictions,andwhen
interpretedbyusingthecorrecttemporalorderingthereisaninfluenceofthefirsttimepointon
thesecond,andaninfluenceofthefirstandsecondtimepointsonthethird.Weprovidedsome
examplesofinterpretationattheendofSection5.5.Fortriadicthree-modedistancessimilar
statementsaboutconditionaloddscanbeobtained.

Thetriadicgravitymodelsarenotcollapsible,i.e.thechangefromtimepoint1to2intriadic
distancemodelsisdifferentfromthechangethatisobtainedwhenthetablewascollapsedover
thethirdtimepoint.Amodeliscollapsiblewhentheconditionalassociationequalsthemarginal
association,andthisisgenerallysoforconditionalindependencemodels(Bishopetal.,1975).
FortheexamplethatwasdiscussedinSection5thiswouldbethenon-fittingfirst-orderMarkov
model.Apossiblereasonforthefailureofthismodelissubjectheterogeneity,whichisdue
toignoringrelevantcovariatesintheanalysis(Agresti(2002),page478).Inotherwords,the
groupofpeoplewhomakethesamechangefromtimepoint1to2donotformahomogeneous
group.Byusingthechoicesthataremadeatthethirdtimepointweobtainmorereliablechange
estimates.

InthispaperallmodelswereestimatedwithLEM.Thisyieldedsomeproblems;forexample,
forsquaretablesthemodelwithstablemassesbutdynamicpositionscannotbefittedbyusing
softwareforassociationmodels.Furthermore,themodelsforobservationsonthreetimepoints
couldnotbeestimatedinmorethantwodimensions,andforthemodelformultipletwo-way
tablessometimesanegativeassociationcoefficientoccursforaparticularlayerwhichunder
adistancemodelisnotpossible.Todealwithsuchproblemsspecialsoftwareshouldbewrit-
ten.

Wetriedtobuildmodelsforthewholedataset.Anotherwayofanalysingsquaretablesis
todecomposethetableintoasymmetricpartandaskewsymmetricpart,andthesearethen
analysedseparately.Oftenthisisdonebyusingleastsquarestechniques.Thebestknownofsuch
proceduresisthatduetoGower(1977)anddiscussedalsoinConstantineandGower(1978).
BilinearformsforskewsymmetrywerediscussedinvanderHeijdenandMooijaart(1995).For
atreatmentofskewsymmetryinthethree-waycaseseedeRooijandHeiser(2000).

Theuseofgravitymodelstoexplainsocialphenomenaisnotnew.Tobler(1976),forexam-
ple,usedasocialgravitymodelformigrationdata.Gravitationalmodelsarealsooftenusedin
economicandtransportationalstudies(see,forexample,SenandSmith(1995)).Inthesecases,
however,thedistancesareoftenknowninadvance,i.e.theyarerealdistances,orthedistances
aremeasuredbyseveralvariables.Inourcase,however,thedistancesmustbeestimatedfrom
thedata.ThefactthatNewton’sgravitymodelisusedmoreofteninotherareasisduetoits
simpleandunderstandablenature:massanddistanceareeasilygraspedconcepts.Inthispaper
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these concepts are used for the analysis of change. For change from one time point to another
these models give a very natural description of the change process.
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Appendix A: Software note

We used the program LEM to obtain fitted frequencies. The scaling and locations were found by using
MATLAB. A MATLAB shield was built around LEM such that no manual copying is needed in perform-
ing the analysis. On request the MATLAB and LEM files can be obtained from the author.
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